Презентация Crystal defects онлайн

На нашем сайте вы можете скачать и просмотреть онлайн доклад-презентацию на тему Crystal defects абсолютно бесплатно. Урок-презентация на эту тему содержит всего 43 слайда. Все материалы созданы в программе PowerPoint и имеют формат ppt или же pptx. Материалы и темы для презентаций взяты из открытых источников и загружены их авторами, за качество и достоверность информации в них администрация сайта не отвечает, все права принадлежат их создателям. Если вы нашли то, что искали, отблагодарите авторов - поделитесь ссылкой в социальных сетях, а наш сайт добавьте в закладки.
Презентации » Химия » Crystal defects



Оцените!
Оцените презентацию от 1 до 5 баллов!
  • Тип файла:
    ppt / pptx (powerpoint)
  • Всего слайдов:
    43 слайда
  • Для класса:
    1,2,3,4,5,6,7,8,9,10,11
  • Размер файла:
    1.05 MB
  • Просмотров:
    48
  • Скачиваний:
    0
  • Автор:
    неизвестен



Слайды и текст к этой презентации:

№1 слайд
Crystal defects
Содержание слайда: Crystal defects

№2 слайд
Perfect Crystals All atoms
Содержание слайда: Perfect Crystals All atoms are at rest on their correct lattice position. Hypothetically, only at zero Kelvin. S=0 W=1, only one possible arrangement to have all N atoms exactly on their lattice points. Vibration of atoms can be regarded as a form of defects.

№3 слайд
Classification of defects in
Содержание слайда: Classification of defects in solids Zero-dimensional (point) defects Vacancies, Interstitial atoms (ions), Foreign atoms (ions) One-dimensional (linear) defects Edge dislocation, screw dislocation Two-dimensional (flat) defects Antiphase boundary, shear plane, low angle twist boundary, low angle tilt boundary, grain boundary, surface Three-dimensional (spatial) defects Pores, foreign inclusions

№4 слайд
Thermodynamics of defect
Содержание слайда: Thermodynamics of defect formation Perfect → imperfect n vacancies created G=Gdef-Gper=H-TS H=n Hi Hi: enthalpy of formation of one vacant site S=Sosc+Sc Sosc: change of oscillation entropy of atoms surrounding the vacancy Sc: change in cofigurational entropy of system on vacancies formation

№5 слайд
Содержание слайда:

№6 слайд
Содержание слайда:

№7 слайд
Содержание слайда:

№8 слайд
Defect formation possible
Содержание слайда: Defect formation possible only due to increased configurational entropy in that process. Defect formation possible only due to increased configurational entropy in that process. After n exceeds a certain limit, no significant increase in Sc is produced

№9 слайд
Crystal Defects Defects can
Содержание слайда: Crystal Defects Defects can affect Strength Conductivity Deformation style Color

№10 слайд
Содержание слайда:

№11 слайд
NaCl Dissociation enthalpy
Содержание слайда: NaCl Dissociation enthalpy for vacancies pairs ≈ 120 kJ/mol. At room temperature, 1 of 1015 crystal positions are vacant. Corresponds to 10000 Schottky defect in 1 mg. These are responsible for electrical and optical properties of NaCl.

№12 слайд
Содержание слайда:

№13 слайд
AgCl Ag in interstitial
Содержание слайда: AgCl Ag+ in interstitial sites. (Ag+)i tetrahedrally surrounded by 4 Cl- and 4 Ag+. Some covalent interaction between (Ag+)i and Cl- (further stabilization of Frenkel defects). Na+ harder, no covalent interaction with Cl-. Frenkel defects don’t occur in NaCl. CaF2, ZrO2 (Fluorite structure): anion in interstitial sites. Na2O (anti fluorite): cation in interstitial sites.

№14 слайд
Crystal Defects . Line
Содержание слайда: Crystal Defects 2. Line Defects d) Edge dislocation Migration aids ductile deformation

№15 слайд
Crystal Defects . Line
Содержание слайда: Crystal Defects 2. Line Defects e) Screw dislocation (aids mineral growth)

№16 слайд
Crystal Defects . Plane
Содержание слайда: Crystal Defects 3. Plane Defects f) Lineage structure or mosaic crystal Boundary of slightly mis-oriented volumes within a single crystal Lattices are close enough to provide continuity (so not separate crystals) Has short-range order, but not long-range (V4)

№17 слайд
Crystal Defects . Plane
Содержание слайда: Crystal Defects 3. Plane Defects g) Domain structure (antiphase domains) Also has short-range but not long-range order

№18 слайд
Crystal Defects . Plane
Содержание слайда: Crystal Defects 3. Plane Defects h) Stacking faults Common in clays and low-T disequilibrium A - B - C layers may be various clay types (illite, smectite, etc.) ABCABCABCABABCABC AAAAAABAAAAAAA ABABABABABCABABAB

№19 слайд
Содержание слайда:

№20 слайд
Color depends on host crystal
Содержание слайда: Color depends on host crystal not on nature of vapor. Color depends on host crystal not on nature of vapor. K vapors would produce the same color. Color centres can be investigated by ESR. Radiation with X-rays produce also color centres. Due to ionization of Cl-.

№21 слайд
Содержание слайда:

№22 слайд
Содержание слайда:

№23 слайд
Содержание слайда:

№24 слайд
Different types of color
Содержание слайда: Different types of color centres

№25 слайд
Colors in the solid state
Содержание слайда: Colors in the solid state

№26 слайд
Electromagnetic Radiation and
Содержание слайда: Electromagnetic Radiation and the Visible Spectrum UV 100-400 nm 12.4 - 3.10 eV Violet 400-425 nm 3.10 - 2.92 eV Blue 425-492 nm 2.92 - 2.52 eV Green 492-575 nm 2.52 - 2.15 eV Yellow 575-585 nm 2.15 - 2.12 eV Orange 585-647 nm 2.12 - 1.92 eV Red 647-700 nm 1.92 - 1.77 eV Near IR 10,000-700 nm 1.77 - 0.12 eV If absorbance occurs in one region of the color wheel the material appears with the opposite (complimentary color). For example: a material absorbs violet light  Color = Yellow a material absorbs green light  Color = Red a material absorbs violet, blue & green  Color = Orange-Red a material absorbs red, orange & yellow  Color = Blue E = hc/ = {(4.1357 x 10-15 eV-s)(2.998 x 108 m/s)}/ E (eV) = 1240/(nm)

№27 слайд
Color in Extended Inorganic
Содержание слайда: Color in Extended Inorganic Solids: absorption Intra-tomic (Localized) excitations Cr3+ Gemstones (i.e. Cr3+ in Ruby and Emerald) Blue and Green Cu2+ compounds (i.e. malachite, turquoise) Blue Co2+ compounds (i.e. Al2CoO4, azurite) Charge-transfer excitations (metal-metal, anion-metal) Fe2+  Ti4+ in sapphire Fe2+  Fe3+ in Prussian Blue O2-  Cr6+ in BaCrO4 Valence to Conduction Band Transitions in Semiconductors WO3 (Yellow) CdS (Yellow) & CdSe HgS (Cinnabar - Red)/ HgS (metacinnabar - Black) Intraband excitations in Metals Strong absorption within a partially filled band leads to metallic lustre or black coloration Most of the absorbed radiation is re-emitted from surface in the form of visible light  high reflectivity (0.90-0.95)

№28 слайд
Gemstones
Содержание слайда: Gemstones

№29 слайд
Cr Gemstones Excitation of an
Содержание слайда: Cr3+ Gemstones Excitation of an electron from one d-orbital to another d-orbital on the same atom often gives rise to absorption in the visible region of the spectrum. The Cr3+ ion in octahedral coordination is a very interesting example of this. Slight changes in it’s environment lead to changes in the splitting of the t2g and eg orbitals, which changes the color the material. Hence, Cr3+ impurities are important in a number of gemstones.

№30 слайд
Содержание слайда:

№31 слайд
Содержание слайда:

№32 слайд
Tunabe-Sugano Diagram Cr The
Содержание слайда: Tunabe-Sugano Diagram Cr3+ The Tunabe-Sugano diagram below shows the allowed electronic excitations for Cr3+ in an octahedral crystal field (4A2  4T1 & 4A2  4T2). The dotted vertical line shows the strength of the crystal field splitting for Cr3+ in Al2O3. The 4A2  4T1 energy difference corresponds to the splitting between t2g and eg

№33 слайд
Ruby Red
Содержание слайда: Ruby Red

№34 слайд
Emerald Green
Содержание слайда: Emerald Green

№35 слайд
Содержание слайда:

№36 слайд
Содержание слайда:

№37 слайд
Содержание слайда:

№38 слайд
Содержание слайда:

№39 слайд
Содержание слайда:

№40 слайд
Charge Transfer in Sapphire
Содержание слайда: Charge Transfer in Sapphire The deep blue color the gemstone sapphire is also based on impurity doping into Al2O3. The color in sapphire arises from the following charge transfer excitation: Fe2+ + Ti4+  Fe3+ + Ti3+ (max ~ 2.2 eV, 570 nm) The transition is facilitated by the geometry of the Al2O3 structure where the two ions share an octahedral face, which allows for favorable overlap of the dz2 orbitals. Unlike the d-d transition in Ruby, the charge-transfer excitation in sapphire is fully allowed. Therefore, the color in sapphire requires only ~ 0.01% impurities, while ~ 1% impurity level is needed in ruby.

№41 слайд
Содержание слайда:

№42 слайд
Cu Transitions The d
Содержание слайда: Cu2+ Transitions The d9 configuration of Cu2+, leads to a Jahn-Teller distortion of the regular octahedral geometry, and sets up a fairly low energy excitation from dx2-y2 level to a dz2 level. If this absorption falls in the red or orange regions of the spectrum, a green or blue color can result. Some notable examples include: Malachite (green) Cu2CO3(OH)2 Turquoise (blue-green) CuAl6(PO4)(OH)8*4H2O Azurite (blue) Cu3(CO3)2(OH)2

№43 слайд
Anion to Metal Charge
Содержание слайда: Anion to Metal Charge Transfer Normally charge transfer transitions from an anion (i.e. O2-) to a cation fall in the UV region of the spectrum and do not give rise to color. However, d0 cations in high oxidation states are quite electronegative, lowering the energy of the transition metal based LUMO. This moves the transition into the visible region of the spectrum. The strong covalency of the metal-oxygen bond also strongly favors tetrahedral coordination, giving rise to a structure containing isolated MO4n- tetrahedra. Some examples of this are as follows: Ca3(VO4)2 (tetrahedral V5+) Color = White PbCrO4 (tetrahedral Cr6+) Color = Yellow CaCrO4 & K2CrO4 (tetrahedral Cr6+) Color = Yellow PbMoO4 (tetrahedral Mo6+) Color = Yellow KMnO4 (tetrahedral Mn7+) Color = Maroon

Скачать все slide презентации Crystal defects одним архивом: