Презентация Currents in мetals онлайн

На нашем сайте вы можете скачать и просмотреть онлайн доклад-презентацию на тему Currents in мetals абсолютно бесплатно. Урок-презентация на эту тему содержит всего 36 слайдов. Все материалы созданы в программе PowerPoint и имеют формат ppt или же pptx. Материалы и темы для презентаций взяты из открытых источников и загружены их авторами, за качество и достоверность информации в них администрация сайта не отвечает, все права принадлежат их создателям. Если вы нашли то, что искали, отблагодарите авторов - поделитесь ссылкой в социальных сетях, а наш сайт добавьте в закладки.
Презентации » Физика » Currents in мetals



Оцените!
Оцените презентацию от 1 до 5 баллов!
  • Тип файла:
    ppt / pptx (powerpoint)
  • Всего слайдов:
    36 слайдов
  • Для класса:
    1,2,3,4,5,6,7,8,9,10,11
  • Размер файла:
    1.07 MB
  • Просмотров:
    75
  • Скачиваний:
    0
  • Автор:
    неизвестен



Слайды и текст к этой презентации:

№1 слайд
Physics Voronkov Vladimir
Содержание слайда: Physics 1 Voronkov Vladimir Vasilyevich

№2 слайд
Lecture Currents in Metals
Содержание слайда: Lecture 11 Currents in Metals The effects of magnetic fields. The production and properties of magnetic fields.

№3 слайд
Types of Conductivity
Содержание слайда: Types of Conductivity Conductors are materials through which charge moves easily. Insulators are materials through which charge does not move easily. Semiconductors are materials intermediate to conductors and insulators.

№4 слайд
Drift speed of electrons
Содержание слайда: Drift speed of electrons There is a zigzag motion of an electron in a conductor. The changes in direction are the result of collisions between the electron and atoms in the conductor. The net motion – drift speed of the electron is opposite the direction of the electric field.

№5 слайд
So when we consider electric
Содержание слайда: So when we consider electric current as a flow of electrons: So when we consider electric current as a flow of electrons: in reality there happens zigzag motion of free electrons in the metal:

№6 слайд
Current in metals Every atom
Содержание слайда: Current in metals Every atom in the metallic crystal gives up one or more of its outer electrons. These electrons are then free to move through the crystal, colliding at intervals with stationary positive ions, then the resistivity is:  = m/(ne2) n - the number density of free electrons, m and e – mass and charge of electron, – average time between collisions.

№7 слайд
Resistivity A conductor with
Содержание слайда: Resistivity A conductor with current: Current density: I – electric current A – the cross-sectional area of the conductor vd – drift speed E = J - resistivity

№8 слайд
Conductivity A current
Содержание слайда: Conductivity A current density J and an electric field E are established in a conductor whenever a potential difference is maintained across the conductor:  is conductivity:  = 1/ 

№9 слайд
Ohm s law again For many
Содержание слайда: Ohm’s law again For many materials (including most metals), the ratio of the current density to the electric field is a constant  that is independent of the electric field producing the current: J = E

№10 слайд
Magnets A single magnetic
Содержание слайда: Magnets A single magnetic pole has never been isolated. Magnetic poles are always found in pairs. The direction of magnetic field is from the North pole to the South pole of a magnet.

№11 слайд
Magnet Poles Magnet field
Содержание слайда: Magnet Poles Magnet field lines connect unlike poles. Magnet field lines repels from like poles.

№12 слайд
Magnet Force The magnitude FB
Содержание слайда: Magnet Force The magnitude FB of the magnetic force exerted on the particle is proportional to the charge q and to the speed v of the particle. The magnitude and direction of FB depend on the velocity of the particle and on the magnitude and direction of the magnetic field B. When a charged particle moves parallel to the magnetic field vector, the magnetic force acting on the particle is zero. When the particle’s velocity vector makes any angle 0 with the magnetic field, the magnetic force acts in a direction perpendicular to both v and B. The magnetic force exerted on a positive charge is in the direction opposite the direction of the magnetic force exerted on a negative charge moving in the same direction. The magnitude of the magnetic force exerted on the moving particle is proportional to sin , where  is the angle the particle’s velocity vector makes with the direction of B.

№13 слайд
The text in the previous
Содержание слайда: The text in the previous slide can be summarized as: So the units for B are: The magnetic force is perpendicular to both v and B. FB=qVBsin

№14 слайд
Direction of FB Right hand
Содержание слайда: Direction of FB Right hand rule: The fingers point in the direction of v, with B coming out of your palm, so that you can curl your fingers in the direction of B. The direction of , and the force on a positive charge, is the direction in which the thumb points.

№15 слайд
Magnetic field direction
Содержание слайда: Magnetic field direction Magnetic field lines coming out of the paper are indicated by dots, representing the tips of arrows coming outward. Magnetic field lines going into the paper are indicated by crosses, representing the feathers of arrows going inward.

№16 слайд
Magnetic Force on a Current
Содержание слайда: Magnetic Force on a Current Magnetic force is exerted on a single charge moving in a magnetic field. A current-carrying wire also experiences a force when placed in a magnetic field. This follows from the fact that the current is a collection of many charged particles in motion; hence, the resultant force exerted by the field on the wire is the vector sum of the individual forces exerted on all the charges making up the current. The force exerted on the particles is transmitted to the wire when the particles collide with the atoms making up the wire.

№17 слайд
n is the number density of
Содержание слайда: n is the number density of charged particles q n is the number density of charged particles q vd is the drift speed of q A – area of the segment L – the length of the segment Then AL is the volume of the segment, and

№18 слайд
Arbitrary shaped wire The
Содержание слайда: Arbitrary shaped wire The force on a small segment of an arbitrary shaped wire is: The total force is: a and b are the end points of the wire.

№19 слайд
Curved Wire in a Uniform
Содержание слайда: Curved Wire in a Uniform Magnetic field as B is uniform: The magnetic force on a curved current-carrying wire in a uniform magnetic field is equal to that on a straight wire connecting the end points and carrying the same current.

№20 слайд
Magnetic force on a straight
Содержание слайда: Magnetic force on a straight wire So, the force on a straight wire in a uniform magnetic field is: is a vector multiplication. Where L is a vector that points in the direction of the current I and has a magnitude equal to the length L of the segment. This expression applies only to a straight segment of wire in a uniform magnetic field.

№21 слайд
Loop Wire in a Uniform
Содержание слайда: Loop Wire in a Uniform Magnetic field The net magnetic force acting on any closed current loop in a uniform magnetic field is zero: Then the net force is zero: FB=0

№22 слайд
Current Loop Torque in a
Содержание слайда: Current Loop Torque in a Uniform Magnetic Field - Overhead view of a rectangular loop in a uniform magnetic field. Sides 1 and 3 are parallel to magnetic field, so only sides 2 and for experiences magnetic forces. - Magnet forces, acting on sides 2 and 4 create a torque on the loop.

№23 слайд
When the magnetic field is
Содержание слайда: When the magnetic field is parallel to the plane of the loop, the maximal torque on the loop is: When the magnetic field is parallel to the plane of the loop, the maximal torque on the loop is: ab is the area of the loop A:

№24 слайд
When the loop is not parallel
Содержание слайда: When the loop is not parallel to the magnetic field, i.e. the angle between A and B is  < 90° then: When the loop is not parallel to the magnetic field, i.e. the angle between A and B is  < 90° then: So the torque on a loop in a uniform magnetic field is: This formula is correct not only for a rectangular loop, but for a planar loop of any shape.

№25 слайд
Area Vector In formula for
Содержание слайда: Area Vector In formula for torque we have vector A: - Its direction is perpendicular to the plane of the loop, - its magnitude is equal to the area of the loop. We determine the direction of A using the right-hand rule. When you curl the fingers of your right hand in the direction of the current in the loop, your thumb points in the direction of A.

№26 слайд
Right hand rule for loop
Содержание слайда: Right – hand rule for loop The direction of the magnetic moment is the same as the direction of A.

№27 слайд
Magnetic Moment The vector
Содержание слайда: Magnetic Moment The vector product IA is defined to be the magnetic dipole moment  (often simply called the “magnetic moment”) of the current loop: Then the torque on a current-carrying loop is:

№28 слайд
Potential Energy of a
Содержание слайда: Potential Energy of a Magnetic Moment The potential energy of a system having magnetic dipole  in the magnetic field B is: Here we have scalar product B. Then the lowest energy is when  points as B, the highest energy is when  points opposite B:

№29 слайд
Motion of a Charged Particle
Содержание слайда: Motion of a Charged Particle in a Uniform Magnetic Field When the velocity of a charged particle is perpendicular to a uniform magnetic field, the particle moves in a circular path in a plane perpendicular to B. The magnetic force FB acting on the charge is always directed toward the center of the circle.

№30 слайд
Using the obtained formula we
Содержание слайда: Using the obtained formula we get the angular velocity here v is perpendicular to B.

№31 слайд
Lorentz Force In the presence
Содержание слайда: Lorentz Force In the presence of E and B, the force acting on a charged particle is: here q is the charge of the particle, v – the speed of the particle, E – electric field vector B – magnetic field vector

№32 слайд
The Hall Effect When a
Содержание слайда: The Hall Effect When a current-carrying conductor is placed in a magnetic field, a potential difference is generated in a direction perpendicular to both the current and the magnetic field.

№33 слайд
the magnetic force exerted on
Содержание слайда: the magnetic force exerted on the carriers has magnitude qvdB. the magnetic force exerted on the carriers has magnitude qvdB. this force is balanced by the electric force qEH: d is the width of the conductor: n – charge density: .vd - charge carrier drift speed. then we obtain the Hall voltage:

№34 слайд
Using that A td cross
Содержание слайда: Using that A=td – cross sectional area of the conductor, Using that A=td – cross sectional area of the conductor, t – thickness of the conductor we can obtain: RH is the Hall coefficient: RH = 1/(nq)

№35 слайд
When the charge carriers in a
Содержание слайда: When the charge carriers in a Hall-effect apparatus are negative, the upper edge of the conductor becomes negatively charged, and c is at a lower electric potential than a. When the charge carriers in a Hall-effect apparatus are negative, the upper edge of the conductor becomes negatively charged, and c is at a lower electric potential than a. When the charge carriers are positive, the upper edge becomes positively charged, and c is at a higher potential than a.

№36 слайд
Units in Si Magnetic fieldB T
Содержание слайда: Units in Si Magnetic field B T= N*s/(C*m) T= N/(A*m) Electric Field E V/m=N/C Number density n 1/m3 Torque  N*m

Скачать все slide презентации Currents in мetals одним архивом: