Презентация Электромагнитные устройства и трансформаторы онлайн

На нашем сайте вы можете скачать и просмотреть онлайн доклад-презентацию на тему Электромагнитные устройства и трансформаторы абсолютно бесплатно. Урок-презентация на эту тему содержит всего 32 слайда. Все материалы созданы в программе PowerPoint и имеют формат ppt или же pptx. Материалы и темы для презентаций взяты из открытых источников и загружены их авторами, за качество и достоверность информации в них администрация сайта не отвечает, все права принадлежат их создателям. Если вы нашли то, что искали, отблагодарите авторов - поделитесь ссылкой в социальных сетях, а наш сайт добавьте в закладки.
Презентации » Физика » Электромагнитные устройства и трансформаторы



Оцените!
Оцените презентацию от 1 до 5 баллов!
  • Тип файла:
    ppt / pptx (powerpoint)
  • Всего слайдов:
    32 слайда
  • Для класса:
    1,2,3,4,5,6,7,8,9,10,11
  • Размер файла:
    208.88 kB
  • Просмотров:
    69
  • Скачиваний:
    0
  • Автор:
    неизвестен



Слайды и текст к этой презентации:

№1 слайд
Электромагнитные устройства и
Содержание слайда: Электромагнитные устройства и трансформаторы Лекция 7

№2 слайд
Магнитное поле .Классификация
Содержание слайда: Магнитное поле 1. Классификация материалов по магнитным свойствам. Подразделение веществ на сильномагнитные и слабомагнитные. Из курса физики известно, что все вещества по их магнитным свойствам подразделяют на диамагнитные, парамагнитные, ферромагнитные, ферримагнитные и антиферромагнитные. У диамагнитных веществ относительная магнитная проницаемость μr<1, например, для висмута μr = 0,99983, у парамагнитных веществ μr>1, например, для платины μr = 1,00036. У ферромагнитных веществ (железо, кобальт и их сплавы), много больше единицы (например, 104, а у некоторых материалов даже до 106). У ферримагнитных веществ μr того же порядка, что и у ферромагнитных, а у антиферромагнитных веществ μr того же порядка, что и у пара-магнитных. При решении большинства электротехнических задач достаточно подразделять все вещества не на перечисленные группы, а на сильномагнитные, у которых μr >>1, и на слабомагнитные (практически немагнитные), у которых μr≈1.

№3 слайд
.Основные величины,
Содержание слайда: 2. Основные величины, характеризующие магнитное поле. Магнитная индукция В — это векторная величина, определяемая по силовому воздействию магнитного поля на ток. Намагниченность J — магнитный момент единицы объема вещества. Кроме этих двух величин магнитное поле характеризуется напряженностью магнитного поля Н.

№4 слайд
Содержание слайда:

№5 слайд
Содержание слайда:

№6 слайд
Содержание слайда:

№7 слайд
Известно, что ферро- и
Содержание слайда: Известно, что ферро- и ферримагнитные тела состоят из областей самопроизвольного (спонтанного) намагничивания. Магнитное состояние каждой области характеризуется вектором намагниченности. Направление вектора намагниченности зависит от внутренних упругих напряжений и кристаллической структуры ферромагнитного тела. Векторы намагниченности отдельных областей ферро(ферри)магнитного тела, на которые не воздействовало внешнее магнитное поле, равновероятно направлены в различные стороны. Поэтому во внешнем относительно этого тела пространстве намагниченность тела не проявляется. Если же его поместить во внешнее поле Н, то под его воздействием векторы намагниченности отдельных областей повернутся в соответствии с полем. При этом индукция результирующего поля в теле может оказаться во много раз больше, чем магнитная индукция внешнего поля до помещения в него ферромагнитного тела.

№8 слайд
.Классификация ферромагнитных
Содержание слайда: 3. Классификация ферромагнитных материалов. Гистерезис. Свойства ферромагнитных материалов принято характеризовать зависимостью магнитной индукции В от напряженности магнитного поля Н. Различают два основных типа этих зависимостей: кривые намагничивания и гистерезисные петли. Под кривыми намагничивания понимают однозначную зависимость между В и Н. Кривые намагничивания подразделяют на начальную, основную и безгистерезисную (что будет пояснено далее).

№9 слайд
Из курса физики известно, что
Содержание слайда: Из курса физики известно, что ферромагнитным материалам присуще явление гистерезиса — отставание изменения магнитной индукции В от изменения напряженности магнитного поля Н. Он обусловлен необратимыми изменениями энергетического состояния под действием внешнего поля Н. При периодическом изменении напряженности поля зависимость между В и Н приобретает петлевой характер. Различают несколько типов гистерезисных петель — симметричную, пре-дельную и несимметричную (частный цикл).

№10 слайд
На рис. . изображено
Содержание слайда: На рис. 14.1 изображено семейство симметричных гистерезисных петель. Для каждой симметричной петли максимальное положительное значение В равно максимальному отрицательному значению B и соответственно Hmax = |-Hmax|.

№11 слайд
Геометрическое место вершин
Содержание слайда: Геометрическое место вершин симметричных гистерезисных петель называют основной кривой намагничивания. При очень больших Н вблизи ±Hmax восходящая и нисходящая ветви гистерезисной петли практически сливаются. Предельной гистерезисной петлей или предельным циклом называют симметричную гистерезисную петлю, снятую при очень больших Hmax. Индукцию при Н = 0 называют остаточной индукцией и обозначают Вr. Напряженность поля при В = 0 называют задерживающей или коэрцитивной силой и обозначают Hc. Участок предельного цикла BrHc (рис. 14.1) принято называть кривой размагничивания или «спинкой» гистерезисной петли.

№12 слайд
Если изменять Н периодически
Содержание слайда: Если изменять Н периодически и так, что +Hmax ≠ |-Hmax|, то зависимость между B и H будет иметь вид петли, но центр петли не совпадает с началом координат (рис. 14.2). Такие гистерезисные петли называют частными петлями гистерезиса или частными циклами.

№13 слайд
Когда предварительно
Содержание слайда: Когда предварительно размагниченный ферромагнитный материал (В = 0, H = 0) намагничивают, монотонно увеличивая Н, получаемую зависимость между В и Н называют начальной кривой намагничивания.

№14 слайд
Начальная и основная кривые
Содержание слайда: Начальная и основная кривые намагничивания настолько близко расположены друг к другу, что практически во многих случаях их можно считать совпадающими (рис. 14.2). Безгистерезисной кривой намагничивания называют зависимость между В и Н, возникающую, когда при намагничивании ферромагнитного материала его периодически постукивают или воздействуют на него полем, имеющим кроме постоянной составляющей еще и затухающую по амплитуде синусоидальную составляющую. При этом гистерезис как бы снимается. Безгистерезисная кривая намагничивания резко отличается от основной кривой.

№15 слайд
Потери, обусловленные
Содержание слайда: Потери, обусловленные гистерезисом. При периодическом перемагничивании ферромагнитного материала в нем совершаются необратимые процессы, на которые расходуется энергия от намагничивающего источника. В общем случае потери в ферромагнитном сердечнике обусловлены гистерезисом, макроскопическими вихревыми токами и магнитной вязкостью. Степень проявления различных видов потерь зависит от скорости перемагничивания ферромагнитного материала. Если сердечник перемагничивается во времени замедленно, то потери в сердечнике обусловлены практически только гистерезисом (потери от макроскопических вихревых токов и магнитной вязкости при этом стремятся к нулю).

№16 слайд
Физически потери,
Содержание слайда: Физически потери, обусловленные гистерезисом, вызваны инерционностью процессов роста зародышей перемагничивания, инерционностью процессов смещения доменных границ и необратимыми процессами вращения векторов намагниченности. Площадь гистерезисной петли ∫ HdB характеризует энергию, выделяющуюся в единице объема ферромагнитного вещества за один цикл перемагничивания.

№17 слайд
Если ферромагнитный сердечник
Содержание слайда: Если ферромагнитный сердечник подвергается периодическому намагничиванию (например, в цепях переменного тока), то для уменьшения потерь на гистерезис в нем он должен быть выполнен из магнитомягкого материала

№18 слайд
Магнитомягкие и
Содержание слайда: Магнитомягкие и магнитотвердые материалы. Ферромагнитные материалы подразделяют на магнитомягкие и магнитотвердые. Магнитомягкие материалы обладают круто поднимающейся основной кривой намагничивания и относительно малыми площадями гистерезисных петель. Их применяют во всех устройствах, которые работают или могут работать при периодически изменяющемся магнитном потоке (трансформаторах, электрических двигателях и генераторах, индуктивных катушках и т. п.).

№19 слайд
Некоторые магнитомягкие
Содержание слайда: Некоторые магнитомягкие материалы, например перминвар, сплавы 68НМП и др., обладают петлей гистерезиса по форме, близкой к. прямоугольной. Такие материалы получили распространение в вычислительных устройствах и устройствах автоматики. В группу магнитомягких материалов входят электротехнические стали, железоникелевые сплавы типа пермаллоя и др.

№20 слайд
Магнитотвердые материалы
Содержание слайда: Магнитотвердые материалы обладают полого поднимающейся основной кривой намагничивания и большой площадью гистерезисной петли. В группу магнитотвердых материалов входят углеродистые стали, сплавы магнико, вольфрамовые, платинокобальтовые сплавы и сплавы на основе редкоземельных элементов, например самарийкобальтовые.

№21 слайд
Магнитодиэлектрики и ферриты.
Содержание слайда: Магнитодиэлектрики и ферриты. В радиотехнике, где используют колебания высокой частоты, сердечники индуктивных катушек изготовляют из магнитодиэлектриков или ферритов.

№22 слайд
Магнитодиэлектрики материалы,
Содержание слайда: Магнитодиэлектрики — материалы, полученные путем смешения мелкоизмельченного порошка магнетита, железа или пермаллоя с диэлектриком. Эту смесь формуют и запекают. Каждую ферромагнитную крупинку обволакивает пленка из диэлектрика. Благодаря наличию таких пленок сердечники из магнитодиэлектриков не насыщаются; μr их находится в интервале от нескольких единиц до нескольких десятков.

№23 слайд
Ферриты ферримагнитные
Содержание слайда: Ферриты — ферримагнитные материалы. Магнитомягкие ферриты изготовляют из оксидов железа, марганца и цинка или из оксидов железа, никеля и цинка. Смесь формуют и обжигают, в результате получают твердый раствор. По своим электрическим свойствам ферриты являются полупроводниками. Их объемное сопротивление ρ = 1 ÷ 107 Ом•м, тогда как для железа ρ ~ 10-6 Ом • м.

№24 слайд
Магнитные цепи
Содержание слайда: Магнитные цепи

№25 слайд
Магнитодвижущая
Содержание слайда: Магнитодвижущая (намагничивающая) сила. Магнитодвижущей силой (МДС) или намагничивающей силой (НС) катушки или обмотки с током называют произведение числа витков катушки w на протекающий по ней ток I. МДС Iw вызывает магнитный поток в магнитной цепи подобно тому, как ЭДС вызывает электрический ток в электрической цепи. Как и ЭДС, МДС — величина направленная (положительное направление на схеме обозначают стрелкой). Положительное направление МДС совпадает с движением острия правого винта, если винт вращать по направлению тока в обмотке.

№26 слайд
Для определения
Содержание слайда: Для определения положительного направления МДС пользуются мнемоническим правилом: если сердечник мысленно охватить правой рукой, расположив ее пальцы по току в обмотке, а затем отогнуть большой палец, то последний укажет направление МДС. На рис. 14.5 дано несколько эскизов с различным направлением намотки катушек на сердечник и различным направлением МДС.

№27 слайд
Содержание слайда:

№28 слайд
Разновидности магнитных
Содержание слайда: Разновидности магнитных цепей. Магнитной цепью в общем случае называют совокупность катушек с током, ферромагнитных тел или каких-либо иных тел (сред), по которым замыкается магнитный поток. Магнитные цепи могут быть подразделены на неразветвленные и разветвленные.

№29 слайд
Закон Ома для магнитной цепи.
Содержание слайда: Закон Ома для магнитной цепи.

№30 слайд
Законы Кирхгофа для магнитных
Содержание слайда: Законы Кирхгофа для магнитных цепей.

№31 слайд
Перед тем как записать
Содержание слайда: Перед тем как записать уравнения по законам Кирхгофа, следует произвольно выбрать положительные направления потоков в ветвях и положительные направления обхода контуров. Если направление магнитного потока на некотором участке совпадает с направлением обхода, то падение магнитного напряжения этого участка входит в сумму ∑Um со знаком плюс, если встречно ему, то со знаком минус. Аналогично, если МДС совпадает с направлением обхода, она входит в ∑Iw со знаком плюс, в противном случае — со знаком минус.

№32 слайд
Спасибо за внимание!
Содержание слайда: Спасибо за внимание!

Скачать все slide презентации Электромагнитные устройства и трансформаторы одним архивом:
Похожие презентации