Презентация Колебания и волны. Механические гармонические колебания (на примере маятников) онлайн

На нашем сайте вы можете скачать и просмотреть онлайн доклад-презентацию на тему Колебания и волны. Механические гармонические колебания (на примере маятников) абсолютно бесплатно. Урок-презентация на эту тему содержит всего 10 слайдов. Все материалы созданы в программе PowerPoint и имеют формат ppt или же pptx. Материалы и темы для презентаций взяты из открытых источников и загружены их авторами, за качество и достоверность информации в них администрация сайта не отвечает, все права принадлежат их создателям. Если вы нашли то, что искали, отблагодарите авторов - поделитесь ссылкой в социальных сетях, а наш сайт добавьте в закладки.
Презентации » Физика » Колебания и волны. Механические гармонические колебания (на примере маятников)



Оцените!
Оцените презентацию от 1 до 5 баллов!
  • Тип файла:
    ppt / pptx (powerpoint)
  • Всего слайдов:
    10 слайдов
  • Для класса:
    1,2,3,4,5,6,7,8,9,10,11
  • Размер файла:
    595.91 kB
  • Просмотров:
    88
  • Скачиваний:
    0
  • Автор:
    неизвестен



Слайды и текст к этой презентации:

№1 слайд
ЛЕКЦИЯ КОЛЕБАНИЯ И ВОЛНЫ
Содержание слайда: ЛЕКЦИЯ №8 КОЛЕБАНИЯ И ВОЛНЫ

№2 слайд
Механические гармонические
Содержание слайда: Механические гармонические колебания (на примере маятников) Если физическую систему, обладающую состоянием устойчивого равновесия, вывести из этого состояния каким-либо внешним воз-действием и затем предоставить самой себе, то возникающие в системе колебания вблизи устойчивого равновесия называют собственными или свободными. Способную совершать собственные колебания систему называют осциллятором. Примером линейных (одномерный случай) ос-цилляторов могут служить маятники (рис.): а) пружинный (груз на пружине); б) крутильный (диск на проволоке); в) математи-ческий (материальная точка на нерастяжимой нити); г) физический (С – центр масс твердого тела, О – точка прохождения оси коле-баний, перпендикулярной плоскости чертежа).

№3 слайд
Рассмотрим случай а пружинный
Содержание слайда: Рассмотрим случай а)– пружинный маятник. Второй закон Ньютона для колеблющегося тела для одномерного случая можно записать в виде: m∙ax = Fx = -k∙x или x = Xmax∙cos(ω0t +φ0) Система, совершающая колебания под действием квазиупругой си-лы , называется линейным гармоническим осциллятором (ЛГО). Кинетическая энергия материальной точки (колеблющегося тела):

№4 слайд
Потенциальная энергия
Содержание слайда: Потенциальная энергия ( пружинный маятник): Полная механическая энергия: Классическая колеблющаяся точка не может выйти за границы отрезка [−xmax;+xmax], т.е. находится в потенциальной яме параболической фор-мы. Колебания Wk и Wn совершаются со сдвигом по фазе на π и, следо-вательно, полная механическая энергия материальной точки при свободных незатухающих гармонических колебаниях не изменяется со временем (const).

№5 слайд
г физический маятник
Содержание слайда: г) физический маятник Физический маятник – твердое тело, которое может совершать колебания под действием собственной силы тяжести mg вокруг неподвижной горизонтальной оси, не проходящей через центр масс тела и называемой осью качания. Центр тяжести маятника совпадает с его центром масс. Как правило, силой трения в под-весе маятника пренебрегают и момент относительно оси качания маятника создает только его сила тяжести mg. При отклонении маятника на угол α момент, создаваемый силой тяжести равен: M = mgd sinα . Согласно основному уравнению динамики вращательного движения (для тела с момен- том инерции I, вращающегося вокруг непод- вижной оси в отсутствие трения): При малых α → sinα ≈ α →

№6 слайд
Сравнивая с уравнением
Содержание слайда: Сравнивая с уравнением свободных незатухающих гармонических колебаний: d2x/dt2 + ω2x = 0 , имеем для физического маятника: Предельным случаем физического маятника является математичес-кий маятник - материальная точка, подвешенная на невесомой не-растяжимой нити и совершающая колебания в вертикальной пло-скости под действием силы тяжести. Вся масса сосредоточена в центре масс тела. При этом d=l – длина маятника и момент инер-ции J = ml2. Тогда Длина математического маятника, имеющего такой же период ко-лебаний, что и данный физический маятник, называется приве-денной длиной физического маятника. Точка О1, находящаяся на расстоянии lпр от точки подвеса О маятника, называется центром качания физического маятника. Точки O и О1 обладают свойством взаимности, т.е. при перемене их ролей длина и период маятника останутся прежними.

№7 слайд
Свободные гармонические
Содержание слайда: Свободные гармонические колебания в электрическом колебательном контуре Простейшим колебательным контуром является замкнутая цепь, состоящая из емкости C и катушки индуктивности L. По закону Ома для замкнутой цепи: сумма падений напряжений на проводниках сопротивлением R и на конденсаторе Uс равна ЭДС самоиндукции в контуре IR + Uc = IR + Q/C = εsi = -L(dI/dt). I = dQ/dt → dI/dt = d2Q/dt2, (R→0) → d2Q/dt2 + ω2Q =0 Q =Qmsin(ωt + φ0) и I = dQ/dt = ωQmcos(ωt + φ0) = Imcos(ωt + φ0) W = Wэл + Wмагн = (1/2)∙(LI2 + CU2)

№8 слайд
Сложение гармонических
Содержание слайда: Сложение гармонических колебаний. Фигуры Лиссажу Сложение колебаний – нахождение значения результирующих ко-лебаний системы при ее участии в нескольких колебательных процессах. Различают сложение сонаправленных и взаимнопер-пендикулярных колебаний. Используем метод векторных диаграмм. x1 = A1sin(ω1t + φ1) = A1sinФ1(t) x2 = A2sin(ω2t + φ2) = A2sinФ2(t) Результирующее колебание: x = x1 +x2 = AsinФ(t) , где амплитуда A2(t) = A12 + A22 + 2A1A2cos(Ф2 –Ф1)

№9 слайд
Когерентными называются
Содержание слайда: Когерентными называются колебания, разность фаз которых во времени постоянна; т.к. Φ(t) = (ω2 − ω1)t + (ϕ2 − ϕ1 ) = const , то это выполняется при ω2= ω1= ω, тогда x = x1+ x2= Asin(ωt+ϕ0), где амплитуда А и фаза Ф результирующего колебания. Тогда в зави-симости от значения (ϕ2 −ϕ1) результирующая амплитуда А изменяется в пределах от A = |A1 − A2| при ϕ2 -ϕ1 = ±(2m +1)π, до A = |A1 + A2| при ϕ2 -ϕ1 = ±2 π m (m → целые числа). При ϕ2 -ϕ1 = ±2 π m колебания называются синфазными (в одной фазе), а при ϕ2 -ϕ1 = ±(2m +1)π – противофазными. При ω1 ≠ ω2 результирующий вектор A будет изменяться по длине и вращаться с переменной скоростью. При сложении колебаний с близкими частотами (Δω=|ω2 −ω1|<<ω) возникают, так называе-мые, биения, тогда x1 = xmcosωt, x2 = xmcos(ωt + Δωt).

№10 слайд
t gt gt cos -t cos t Косинус
Содержание слайда: [2ωt >>Δω; cos(-Δωt)=cos(Δωt)] Косинус берется по модулю, так как функция четная и поэтому частота биений ωб = Δω, а не Δω/2. Период биений равен половине периода мо- дуляции: Тб = Тмод /2 = 2π/(Δω)

Скачать все slide презентации Колебания и волны. Механические гармонические колебания (на примере маятников) одним архивом: