Презентация Laws of Thermodynamics онлайн

На нашем сайте вы можете скачать и просмотреть онлайн доклад-презентацию на тему Laws of Thermodynamics абсолютно бесплатно. Урок-презентация на эту тему содержит всего 31 слайд. Все материалы созданы в программе PowerPoint и имеют формат ppt или же pptx. Материалы и темы для презентаций взяты из открытых источников и загружены их авторами, за качество и достоверность информации в них администрация сайта не отвечает, все права принадлежат их создателям. Если вы нашли то, что искали, отблагодарите авторов - поделитесь ссылкой в социальных сетях, а наш сайт добавьте в закладки.
Презентации » Физика » Laws of Thermodynamics



Оцените!
Оцените презентацию от 1 до 5 баллов!
  • Тип файла:
    ppt / pptx (powerpoint)
  • Всего слайдов:
    31 слайд
  • Для класса:
    1,2,3,4,5,6,7,8,9,10,11
  • Размер файла:
    284.00 kB
  • Просмотров:
    105
  • Скачиваний:
    0
  • Автор:
    неизвестен



Слайды и текст к этой презентации:

№1 слайд
Laws of Thermodynamics
Содержание слайда: Laws of Thermodynamics

№2 слайд
Thermodynamics Thermodynamics
Содержание слайда: Thermodynamics Thermodynamics is the study of the effects of work, heat, and energy on a system Thermodynamics is only concerned with macroscopic (large-scale) changes and observations

№3 слайд
Getting Started All of
Содержание слайда: Getting Started All of thermodynamics can be expressed in terms of four quantities Temperature (T) Internal Energy (U) Entropy (S) Heat (Q) These quantities will be defined as we progress through the lesson

№4 слайд
Classical vs Statistical
Содержание слайда: Classical vs Statistical Classical thermodynamics concerns the relationships between bulk properties of matter. Nothing is examined at the atomic or molecular level. Statistical thermodynamics seeks to explain those bulk properties in terms of constituent atoms. The statistical part treats the aggregation of atoms, not the behavior of any individual atom

№5 слайд
Introduction According to
Содержание слайда: Introduction According to British scientist C. P. Snow, the three laws of thermodynamics can be (humorously) summarized as 1. You can’t win 2. You can’t even break even 3. You can’t get out of the game

№6 слайд
. You can t win st law The
Содержание слайда: 1.0 You can’t win (1st law) The first law of thermodynamics is an extension of the law of conservation of energy The change in internal energy of a system is equal to the heat added to the system minus the work done by the system ΔU = Q - W

№7 слайд
Содержание слайда:

№8 слайд
. Process Terminology
Содержание слайда: 1.1 Process Terminology Adiabatic – no heat transferred Isothermal – constant temperature Isobaric – constant pressure Isochoric – constant volume

№9 слайд
. . Adiabatic Process An
Содержание слайда: 1.1.1 Adiabatic Process An adiabatic process transfers no heat therefore Q = 0 ΔU = Q – W When a system expands adiabatically, W is positive (the system does work) so ΔU is negative. When a system compresses adiabatically, W is negative (work is done on the system) so ΔU is positive.

№10 слайд
. . Isothermal Process An
Содержание слайда: 1.1.2 Isothermal Process An isothermal process is a constant temperature process. Any heat flow into or out of the system must be slow enough to maintain thermal equilibrium For ideal gases, if ΔT is zero, ΔU = 0 Therefore, Q = W Any energy entering the system (Q) must leave as work (W)

№11 слайд
. . Isobaric Process An
Содержание слайда: 1.1.3 Isobaric Process An isobaric process is a constant pressure process. ΔU, W, and Q are generally non-zero, but calculating the work done by an ideal gas is straightforward W = P·ΔV Water boiling in a saucepan is an example of an isobar process

№12 слайд
. . Isochoric Process An
Содержание слайда: 1.1.4 Isochoric Process An isochoric process is a constant volume process. When the volume of a system doesn’t change, it will do no work on its surroundings. W = 0 ΔU = Q Heating gas in a closed container is an isochoric process

№13 слайд
. Heat Capacity The amount of
Содержание слайда: 1.2 Heat Capacity The amount of heat required to raise a certain mass of a material by a certain temperature is called heat capacity Q = mcxΔT The constant cx is called the specific heat of substance x, (SI units of J/kg·K)

№14 слайд
. . Heat Capacity of Ideal
Содержание слайда: 1.2.1 Heat Capacity of Ideal Gas CV = heat capacity at constant volume CV = 3/2 R CP = heat capacity at constant pressure CP = 5/2 R For constant volume Q = nCVΔT = ΔU The universal gas constant R = 8.314 J/mol·K

№15 слайд
. You can t break even nd Law
Содержание слайда: 2.0 You can’t break even (2nd Law) Think about what it means to not “break even”. Every effort you put forth, no matter how efficient you are, will have a tiny bit of waste. The 2nd Law can also be stated that heat flows spontaneously from a hot object to a cold object (spontaneously means without the assistance of external work)

№16 слайд
Содержание слайда:

№17 слайд
. Concerning the nd Law The
Содержание слайда: 2.1 Concerning the 2nd Law The second law of thermodynamics introduces the notion of entropy (S), a measure of system disorder (messiness) U is the quantity of a system’s energy, S is the quality of a system’s energy. Another C.P. Snow expression: not knowing the 2nd law of thermodynamics is the cultural equivalent to never having read Shakespeare

№18 слайд
. Implications of the nd Law
Содержание слайда: 2.2 Implications of the 2nd Law Time marches on If you watch a movie, how do you know that you are seeing events in the order they occurred? If I drop a raw egg on the floor, it becomes extremely “disordered” (greater Entropy) – playing the movie in reverse would show pieces coming together to form a whole egg (decreasing Entropy) – highly unlikely!

№19 слайд
. Direction of a Process The
Содержание слайда: 2.3 Direction of a Process The 2nd Law helps determine the preferred direction of a process A reversible process is one which can change state and then return to the original state This is an idealized condition – all real processes are irreversible

№20 слайд
. Heat Engine A device which
Содержание слайда: 2.4 Heat Engine A device which transforms heat into work is called a heat engine This happens in a cyclic process Heat engines require a hot reservoir to supply energy (QH) and a cold reservoir to take in the excess energy (QC) QH is defined as positive, QC is negative

№21 слайд
. . Cycles It is beyond the
Содержание слайда: 2.4.1 Cycles It is beyond the scope of this presentation, but here would be a good place to elaborate on: Otto Cycle Diesel Cycle Carnot Cycle Avoid all irreversible processes while adhering to the 2nd Law (isothermal and adiabatic only)

№22 слайд
. . The Carnot Cycle
Содержание слайда: 2.4.2 The Carnot Cycle

№23 слайд
. . . Carnot explained Curve
Содержание слайда: 2.4.2.1 Carnot explained Curve A (1 → 2): Isothermal expansion at TH Work done by the gas Curve B (2 → 3): Adiabatic expansion Work done by the gas Curve C (3 → 4): Isothermal compression at TC Work done on the gas Curve D (4 → 1): Adiabatic compression Work done on the gas

№24 слайд
. . . Area under PV curve The
Содержание слайда: 2.4.2.2 Area under PV curve The area under the PV curve represents the quantity of work done in a cycle When the curve goes right to left, the work is negative The area enclosed by the four curves represents the net work done by the engine in one cycle

№25 слайд
. Engine Efficiency The
Содержание слайда: 2.5 Engine Efficiency The thermal efficiency of a heat engine is e = 1 + QC/QH The “engine” statement of the 2nd Law: it is impossible for any system to have an efficiency of 100% (e = 1) [Kelvin’s statement] Another statement of the 2nd Law: It is impossible for any process to have as its sole result the transfer of heat from a cooler object to a warmer object [Clausius’s statement]

№26 слайд
. Practical Uses Automobile
Содержание слайда: 2.6 Practical Uses Automobile engines, refrigerators, and air conditioners all work on the principles laid out by the 2nd Law of Thermodynamics Ever wonder why you can’t cool your kitchen in the hot summer by leaving the refrigerator door open? Feel the air coming off the back - you heat the air outside to cool the air inside See, you can’t break even!

№27 слайд
. You can t get out rd Law No
Содержание слайда: 3.0 You can’t get out (3rd Law) No system can reach absolute zero This is one reason we use the Kelvin temperature scale. Not only is the internal energy proportional to temperature, but you never have to worry about dividing by zero in an equation! There is no formula associated with the 3rd Law of Thermodynamics

№28 слайд
. Implications of rd Law MIT
Содержание слайда: 3.1 Implications of 3rd Law MIT researchers achieved 450 picokelvin in 2003 (less than ½ of one billionth!) Molecules near these temperatures have been called the fifth state of matter: Bose-Einstein Condensates Awesome things like super-fluidity and super-conductivity happen at these temperatures Exciting frontier of research

№29 слайд
. The Zeroth Law The First
Содержание слайда: 4.0 The Zeroth Law The First and Second Laws were well entrenched when an additional Law was recognized (couldn’t renumber the 1st and 2nd Laws) If objects A and B are each in thermal equilibrium with object C, then A and B are in thermal equilibrium with each other Allows us to define temperature relative to an established standard

№30 слайд
Содержание слайда:

№31 слайд
. Temperature Standards See
Содержание слайда: 4.1 Temperature Standards See Heat versus Temperature slides for a discussion of these two concepts, and the misconceptions surrounding them Heat is energy transfer Temperature is proportional to internal energy Fahrenheit, Celsius, and Kelvin temp scales

Скачать все slide презентации Laws of Thermodynamics одним архивом: