Презентация Long-Range Order and Superconductivity онлайн

На нашем сайте вы можете скачать и просмотреть онлайн доклад-презентацию на тему Long-Range Order and Superconductivity абсолютно бесплатно. Урок-презентация на эту тему содержит всего 41 слайд. Все материалы созданы в программе PowerPoint и имеют формат ppt или же pptx. Материалы и темы для презентаций взяты из открытых источников и загружены их авторами, за качество и достоверность информации в них администрация сайта не отвечает, все права принадлежат их создателям. Если вы нашли то, что искали, отблагодарите авторов - поделитесь ссылкой в социальных сетях, а наш сайт добавьте в закладки.
Презентации » Физика » Long-Range Order and Superconductivity



Оцените!
Оцените презентацию от 1 до 5 баллов!
  • Тип файла:
    ppt / pptx (powerpoint)
  • Всего слайдов:
    41 слайд
  • Для класса:
    1,2,3,4,5,6,7,8,9,10,11
  • Размер файла:
    8.57 MB
  • Просмотров:
    90
  • Скачиваний:
    1
  • Автор:
    неизвестен



Слайды и текст к этой презентации:

№1 слайд
Long-Range Order and
Содержание слайда: Long-Range Order and Superconductivity Alexander Gabovich, KPI, Lecture 1

№2 слайд
Density matrix in quantum
Содержание слайда: Density matrix in quantum mechanics If one has a large closed quantum-mechanical system with co-ordinates q and a subsystem with co-ordinates x, its wave function Ψ(q,x) generally speaking does not decompose into two ones, each dependent on q and x. If f is a physical quantity, its mean value is given by

№3 слайд
Density matrix in quantum
Содержание слайда: Density matrix in quantum mechanics In the pure case, when the system concerned is described by the wave function one has

№4 слайд
Density matrix in quantum
Содержание слайда: Density matrix in quantum mechanics Another kind of the long-range order is the following:

№5 слайд
Off-diagonal long-range order
Содержание слайда: Off-diagonal long-range order

№6 слайд
Long-range orders below
Содержание слайда: Long-range orders below critical lines of phase transitions (4He)

№7 слайд
Phase transitions
Содержание слайда: Phase transitions

№8 слайд
MICHAEL FARADAY, THE
Содержание слайда: MICHAEL FARADAY, THE PRECURSOR OF LIQUEFACTION Michael Faraday, 1791-1867 He liquefied all gases known to him except O2, N2, CO, NO, CH4, H2. Permanent gases? – NO! COLD WAR OF LIQUEFACTION: O2 – Louis-Paul Cailletet (France) and Raoul-Pierre Pictet (Switzerland) [1877]; N2, Ar – Zygmund Wróblewski and Karol Olszewski (Poland) [1883]

№9 слайд
JAMES DEWAR, THE COMPETITOR A
Содержание слайда: JAMES DEWAR, THE COMPETITOR – A MAN, WHO LIQUEFIED HYDROGEN IN 1898 A Dewar flask in the hands of the inventor. James Dewar’s laboratory in the basement of the Royal Institution in London appears as the background.

№10 слайд
KAMERLINGH-ONNES, THE WINNER
Содержание слайда: KAMERLINGH-ONNES, THE WINNER – PHYSICIST AND ENGINEER (Nobel Prize in Physics, 1913) Heike Kamerlingh Onnes (right) in his Cryogenic Laboratory at Leiden University, with his assistant Gerrit Jan Flim, around the time of the discovery of superconductivity: 1911

№11 слайд
LOW TEMPERATURE STUDIES USING
Содержание слайда: LOW TEMPERATURE STUDIES USING LIQUID HELIUM LED TO NEW DISCOVERIES: NOT ONLY SUPERCONDUCTIVITY!

№12 слайд
Superconducting phenomenology
Содержание слайда: Superconducting phenomenology

№13 слайд
SUPERCONDUCTIVITY AMONG
Содержание слайда: SUPERCONDUCTIVITY AMONG ELEMENTS

№14 слайд
SUPERCONDUCTIVITY, A MIRACLE
Содержание слайда: SUPERCONDUCTIVITY, A MIRACLE FOUND BY KAMERLINGH-ONNES

№15 слайд
ANNIVERSARIES OF key
Содержание слайда: ANNIVERSARIES OF key discoveries 1908-2008 (100) Helium liquefying 1911-2011 (100) Superconductivity 1933-2013 (70) Meissner-Ochsenfeld effect 1956-2011 (55) Cooper pairing concept 1962-2012 (50) Josephson effect 1971-2011 (40) Superfluidity of 3He 1986-2011 (25) High-Tc oxide superconductivity 2001-2011 (10) MgB2 with Tc = 39 K 2008-2013 (5) Iron-based superconductors with Tc = 75 K (in single layers of FeSe)

№16 слайд
PHENOMENOLOGY. NORMAL METALS
Содержание слайда: PHENOMENOLOGY. NORMAL METALS

№17 слайд
Superconducting phenomenology
Содержание слайда: Superconducting phenomenology

№18 слайд
Magnetic field, magnetic
Содержание слайда: Magnetic field, magnetic induction, and magnetization

№19 слайд
Superconducting phenomenology
Содержание слайда: Superconducting phenomenology

№20 слайд
Superconducting phenomenology
Содержание слайда: Superconducting phenomenology

№21 слайд
Superconducting phenomenology
Содержание слайда: Superconducting phenomenology

№22 слайд
Superconducting phenomenology
Содержание слайда: Superconducting phenomenology

№23 слайд
Superconducting phenomenology
Содержание слайда: Superconducting phenomenology

№24 слайд
Creators of the type II
Содержание слайда: Creators of the type II superconductors

№25 слайд
Superconducting phenomenology
Содержание слайда: Superconducting phenomenology

№26 слайд
Superconducting phenomenology
Содержание слайда: Superconducting phenomenology

№27 слайд
Superconducting phenomenology
Содержание слайда: Superconducting phenomenology: London equation

№28 слайд
Superconducting phenomenology
Содержание слайда: Superconducting phenomenology: London equation

№29 слайд
Superconducting phenomenology
Содержание слайда: Superconducting phenomenology: London equation Let us consider the second Newton law mdv/dt = eE. This equations means that there is no resistance! (The main point! – infinite conductivity). The current density j = nsev. Then d(Λj)/dt = E (*), where Λ=m/(nse2). One knows that the full and partial time derivative are connected by the equation d/dt = / t + v. Since real current velocities v in metals are small in comparison with the Fermi velocity vF, one can replace the full derivative by the partial one. Then (Λj)/t = E (i). We have the Maxwell equation (Faraday electromagnetic induction equation): rot E = − c-1H/t (**). Let us apply a rotor operation to the equation (i). Then (Λ rot j)/t = rot E (***).

№30 слайд
Superconducting phenomenology
Содержание слайда: Superconducting phenomenology: London equation From (**) and (***) one obtains (Λ rot j)/t = − c-1H/t (***). Or /t(rot Λj + c-1H ) =0 (****). It means that the quantity in the parentheses of Eq. (****) is conserved in time. Now, it is another main step, that takes into account the superconductivity itself! Specifically, in the bulk of the superconductor both j = 0 And H = 0. It simply reflects the Meissner effect! Then rot Λj + c-1H = 0 (*****). Equations (*****) and (i) constitute the basis of the London theory.

№31 слайд
Superconducting phenomenology
Содержание слайда: Superconducting phenomenology: London equation Equation (*****) and the Maxwell equation rot H = 4πj/c leads to the characteristic result of London electrodynamics. Below, we shall write relevant equations in the SI unit system.

№32 слайд
Superconducting phenomenology
Содержание слайда: Superconducting phenomenology: London equation

№33 слайд
Superconducting phenomenology
Содержание слайда: Superconducting phenomenology: London equation

№34 слайд
Superconducting phenomenology
Содержание слайда: Superconducting phenomenology: London equation Eq. (3.46) can be transformed and solved to obtain Eq. (3.52). Namely, one knows the vector identity rot rot B =  div B – Δ B, where B is an arbitrary vector. However, div B = 0, because there are no magnetic charges. Therefore, Δ B = B/2. Now, for the special geometry of Fig. 3.12 one has

№35 слайд
Superconducting phenomenology
Содержание слайда: Superconducting phenomenology: London equation

№36 слайд
Superconducting phenomenology
Содержание слайда: Superconducting phenomenology: London-Pippard equation

№37 слайд
Brian Pippard -
Содержание слайда: Brian Pippard (1920-2008)

№38 слайд
Superconducting phenomenology
Содержание слайда: Superconducting phenomenology: London-Pippard equation

№39 слайд
Superconductors of the first
Содержание слайда: Superconductors of the first and second kind

№40 слайд
Superconductors of the first
Содержание слайда: Superconductors of the first and second kind

№41 слайд
The London vortex
Содержание слайда: The London vortex

Скачать все slide презентации Long-Range Order and Superconductivity одним архивом: