Презентация Synthetic-Aperture Radar (SAR) Image Formation Processing онлайн

На нашем сайте вы можете скачать и просмотреть онлайн доклад-презентацию на тему Synthetic-Aperture Radar (SAR) Image Formation Processing абсолютно бесплатно. Урок-презентация на эту тему содержит всего 48 слайдов. Все материалы созданы в программе PowerPoint и имеют формат ppt или же pptx. Материалы и темы для презентаций взяты из открытых источников и загружены их авторами, за качество и достоверность информации в них администрация сайта не отвечает, все права принадлежат их создателям. Если вы нашли то, что искали, отблагодарите авторов - поделитесь ссылкой в социальных сетях, а наш сайт добавьте в закладки.
Презентации » Физика » Synthetic-Aperture Radar (SAR) Image Formation Processing



Оцените!
Оцените презентацию от 1 до 5 баллов!
  • Тип файла:
    ppt / pptx (powerpoint)
  • Всего слайдов:
    48 слайдов
  • Для класса:
    1,2,3,4,5,6,7,8,9,10,11
  • Размер файла:
    4.06 MB
  • Просмотров:
    93
  • Скачиваний:
    1
  • Автор:
    неизвестен



Слайды и текст к этой презентации:

№1 слайд
Synthetic-Aperture Radar SAR
Содержание слайда: Synthetic-Aperture Radar (SAR) Image Formation Processing

№2 слайд
Outline Raw SAR image
Содержание слайда: Outline Raw SAR image characteristics Algorithm basics Range compression Range cell migration correction Azimuth compression Motion compensation Types of algorithms Range Doppler algorithm Chirp scaling algorithm Frequency-wavenumber algorithm (-k or f-k) Comparison of algorithms Processing errors, Computational load, Pros and cons Autofocus techniques

№3 слайд
Airborne SAR real-time IFP
Содержание слайда: Airborne SAR real-time IFP block diagram

№4 слайд
Basic SAR image formation
Содержание слайда: Basic SAR image formation processes

№5 слайд
Basic SAR image formation
Содержание слайда: Basic SAR image formation processes

№6 слайд
Basic SAR image formation
Содержание слайда: Basic SAR image formation processes

№7 слайд
Basic SAR image formation
Содержание слайда: Basic SAR image formation processes

№8 слайд
Basic SAR image formation
Содержание слайда: Basic SAR image formation processes

№9 слайд
Optical image-formation
Содержание слайда: Optical image-formation processing

№10 слайд
Demodulated baseband SAR
Содержание слайда: Demodulated baseband SAR signal [from Digital processing of synthetic aperture radar data, by Cumming and Wong, 2005] Time domain representation After removing the radar carrier cos(fo) from the received signal, the demodulated, complex, baseband signal from a single point target can be represented as

№11 слайд
Demodulated baseband SAR
Содержание слайда: Demodulated baseband SAR signal includes R-4 and target RCS factors

№12 слайд
SAR signal spectrum from
Содержание слайда: SAR signal spectrum [from Digital processing of synthetic aperture radar data, by Cumming and Wong, 2005] Frequency-domain represention For reasons of efficiency, many SAR processing algorithms operate in the frequency domain. For the low-squint case, the two-dimensional frequency spectrum of the received SAR signal is

№13 слайд
SAR signal spectrum Also f
Содержание слайда: SAR signal spectrum Also f : range frequency, Hz, where –Fr /2  f  Fr /2 Fr : range sampling frequency, Hz f : azimuth (Doppler) frequency, Hz fc : absolute Doppler centroid frequency, Hz Wr(f ) : envelope of the radar data’s range spectrum Wa(f ) : envelope of the antenna’s beam pattern Doppler spectrum The relationship between azimuth time to frequency is where

№14 слайд
SAR signal spectrum
Содержание слайда: SAR signal spectrum

№15 слайд
Matched filter processing
Содержание слайда: Matched filter processing Given an understanding of the characteristics of the ideal SAR signal, an ideal matched-filter can be applied using correlation to produce a bandwidth limited impulse response. However this process has limitations as the characteristics of the ideal matched-filter varies with the target’s position in range and azimuth. So while such correlation processing is theoretically possible, it is not computationally efficient and is not appropriate when large-scale image-formation processing is required, e.g., from a spaceborne SAR system.

№16 слайд
Range Doppler domain spectrum
Содержание слайда: Range Doppler domain spectrum [from Digital processing of synthetic aperture radar data, by Cumming and Wong, 2005] Range Doppler-domain representation The range-Doppler domain is useful for range-Doppler image formation algorithms. The range-Doppler domain signal is

№17 слайд
Range migration
Содержание слайда: Range migration

№18 слайд
Range-dependent range
Содержание слайда: Range-dependent range migration

№19 слайд
Range-Doppler processing
Содержание слайда: Range-Doppler processing

№20 слайд
Range-Doppler processing
Содержание слайда: Range-Doppler processing

№21 слайд
Range-Doppler processing
Содержание слайда: Range-Doppler processing

№22 слайд
Range-Doppler algorithm
Содержание слайда: Range-Doppler algorithm

№23 слайд
Range-cell migration
Содержание слайда: Range-cell migration compensation Part of the migration compensation requires a re-sampling of the range-compressed pulse using an interpolation process.

№24 слайд
Chirp scaling algorithm The
Содержание слайда: Chirp scaling algorithm The range-Doppler algorithm was the first digital algorithm developed for civilian satellite SAR processing and is still the most widely used. However disadvantages (high computational load, limited accuracy secondary-range compression in high-squint and wide-aperture cases) prompted the development of the chirp-scaling algorithm to eliminate interpolation from the range-cell migration compensation step. As the name implies it uses a scaling principle whereby a frequency modulation is applied to a chirp-encoded signal to achieve a shift or scaling of the signal.

№25 слайд
Chirp scaling algorithm
Содержание слайда: Chirp scaling algorithm

№26 слайд
Chirp scaling algorithm
Содержание слайда: Chirp scaling algorithm

№27 слайд
Chirp scaling algorithm
Содержание слайда: Chirp scaling algorithm

№28 слайд
Chirp scaling algorithm
Содержание слайда: Chirp scaling algorithm

№29 слайд
Chirp scaling algorithm
Содержание слайда: Chirp scaling algorithm

№30 слайд
Range-cell migration
Содержание слайда: Range-cell migration compensation

№31 слайд
Omega-K algorithm WKA The
Содержание слайда: Omega-K algorithm (WKA) The chirp-scaling algorithm assumes a specific form of the SAR signal in the range Doppler domain, which involves approximations that may become invalid for wide apertures or high squint angles. The Omega-K algorithm uses a special operation in the two-dimensional frequency domain to correct range dependent range-azimuth coupling and azimuth frequency dependence. The WKA uses a focusing step wherein a reference function is multiplied to provide focusing of a selected range. Targets at the reference range are correctly focused while targets at other ranges are partially focused. Stolt interpolation is used to focus the remainder of the targets.

№32 слайд
Omega-K algorithm WKA
Содержание слайда: Omega-K algorithm (WKA) Illustration of the range/azimuth cross coupling using the raw phase history from a point target. Range-cell migration introduces a phase change into the azimuth samples in addition to the normal phase encoding. The RCM cross coupling creates an additional azimuth phase term which affects the azimuth FM rate.

№33 слайд
Omega-K algorithm WKA
Содержание слайда: Omega-K algorithm (WKA)

№34 слайд
Stolt interpolation
Содержание слайда: Stolt interpolation

№35 слайд
Stolt interpolation
Содержание слайда: Stolt interpolation

№36 слайд
Stolt interpolation
Содержание слайда: Stolt interpolation

№37 слайд
Comparison of IFP algorithms
Содержание слайда: Comparison of IFP algorithms

№38 слайд
Motion compensation Imperfect
Содержание слайда: Motion compensation Imperfect trajectories during SAR data collection will distort the data set resulting in degraded images unless these imperfections are removed. Removal of the effects of these imperfections is called motion compensation. Motion compensation requires precise knowledge of the antenna’s phase center over the entire aperture. For example vertical velocity will introduce an additional Doppler shift into the data that, if uncompensated, will corrupt along-track processing. Similarly a variable ground speed will result in non-periodic along-track sampling that, if uncompensated, will also corrupt along-track processing. Knowledge of the antenna’s attitude (roll, pitch, yaw angles) is also important as these factors may affect the illumination pattern as well as the position of the antenna’s phase center.

№39 слайд
Motion compensation To
Содержание слайда: Motion compensation To provide position and attitude knowledge various instruments are used Gyroscopes (mechanical or ring-laser) Inertial navigation system (INS) Accelerometers GPS receiver

№40 слайд
Motion compensation
Содержание слайда: Motion compensation

№41 слайд
Motion compensation In
Содержание слайда: Motion compensation In addition to position and attitude knowledge acquired from various external sensors and systems, the radar signal itself can provide information useful in motion compensation. The Doppler spectrum can be used to detect antenna pointing errors. The nadir echo can be used to detect vertical velocity (at least over level terrain).

№42 слайд
Autofocus Just as non-ideal
Содержание слайда: Autofocus Just as non-ideal motion corrupts the SAR’s phase history, the received signal can also reveal the effects of these motion imperfections and subsequently cancel them. This process is called autofocus. Various autofocus algorithms are available Map drift Phase difference Inverse filtering Phase-gradient autofocus Prominent point processing Many of these techniques exploit the availability of a high-contrast point target in the scene.

№43 слайд
Quadratic phase errors
Содержание слайда: Quadratic phase errors

№44 слайд
High-frequency phase errors
Содержание слайда: High-frequency phase errors

№45 слайд
Autofocus inverse filtering
Содержание слайда: Autofocus – inverse filtering

№46 слайд
Autofocus inverse filtering
Содержание слайда: Autofocus – inverse filtering

№47 слайд
Autofocus phase gradient The
Содержание слайда: Autofocus – phase gradient The phase gradient autofocus algorithm is unique in that it is not model based. It estimates higher order phase errors as it accurately estimates multicycle phase errors in SAR signal data representing images over a wide variety of scenes.

№48 слайд
Autofocus phase gradient
Содержание слайда: Autofocus – phase gradient

Скачать все slide презентации Synthetic-Aperture Radar (SAR) Image Formation Processing одним архивом: