Презентация Выбор агента расклинивания при ГРП онлайн

На нашем сайте вы можете скачать и просмотреть онлайн доклад-презентацию на тему Выбор агента расклинивания при ГРП абсолютно бесплатно. Урок-презентация на эту тему содержит всего 18 слайдов. Все материалы созданы в программе PowerPoint и имеют формат ppt или же pptx. Материалы и темы для презентаций взяты из открытых источников и загружены их авторами, за качество и достоверность информации в них администрация сайта не отвечает, все права принадлежат их создателям. Если вы нашли то, что искали, отблагодарите авторов - поделитесь ссылкой в социальных сетях, а наш сайт добавьте в закладки.
Презентации » Физика » Выбор агента расклинивания при ГРП



Оцените!
Оцените презентацию от 1 до 5 баллов!
  • Тип файла:
    ppt / pptx (powerpoint)
  • Всего слайдов:
    18 слайдов
  • Для класса:
    1,2,3,4,5,6,7,8,9,10,11
  • Размер файла:
    0.97 MB
  • Просмотров:
    67
  • Скачиваний:
    0
  • Автор:
    неизвестен



Слайды и текст к этой презентации:

№1 слайд
Содержание слайда:

№2 слайд
Содержание Введение в ГРП
Содержание слайда: Содержание Введение в ГРП Расклинивающий агент. Назначение проппанта Виды расклинивающих агентов Свойства проппанта Движение проппанта Требования, предъявляемые к жидкости гидроразрыва

№3 слайд
Введение в ГРП Сущность
Содержание слайда: Введение в ГРП Сущность гидравлического разрыва пласта (ГРП) в том, что посредством закачки жидкости при высоком давлении происходит раскрытие естественных или образование искусственных трещин в продуктивном пласте и при дальнейшей закачке песчано-жидкостной смеси или кислотного раствора расклинивание образованных трещин с сохранением их высокой пропускной способности после окончания процесса и снятия избыточного давления. В настоящее время ГРП широко применяется во всем мире как в низкопроницаемых, так и в высокопроницаемых пластах-коллекторах. Цели ГРП для пластов с низкой проницаемостью следующие : увеличить добычу или приемистость созданием каналов с высокой продуктивностью, улучшить сообщаемость флюидов между скважиной и пластом Цели ГРП для пластов с высокой проницаемостью следующие : изменение радиального характера притока жидкости из пласта к забою скважины на линейный или билинейный В случае радиального движения жидкости к забою скважины происходит дестабилизация пласта. Объясняется это явление тем, что скорости фильтрации вблизи забоев скважин выше, чем в пласте. Соответственно, возникает значительный перепад давлений между различными участками пласта, скорость движения флюида вблизи забоя скважины сильно возрастает и существует проблема разрушения породы пласта и засорение мехпримесями призабойной зоны скважины. решение проблемы снижения проницаемости призабойной зоны скважины, возникшей в результате воздействия физических или химических факторов (солеотложения, засорение пор призабойной зоны пласта мех.примесями из раствора глушения, проникновение бурового раствора в пласт, образование АСПО и т.д.). улучшение сообщаемости скважины с призабойной зоной, миниминизация напряжений в пласте, снижение скоростей, минимизация миграции тонкодисперсных фракций

№4 слайд
При производстве ГРП должны
Содержание слайда: При производстве ГРП должны быть решены следующие задачи : При производстве ГРП должны быть решены следующие задачи : Создание трещины гидроразрыва путем закачки специально подобранной жидкости ГРП. Удержание трещины в раскрытом состоянии путем добавления в жидкость гидроразрыва проппанта с зернами определенного размера и определенной прочности. Удаление жидкости гидроразрыва для восстановления высоких фильтрационных характеристик призабойной зоны скважины. Повышение продуктивности пласта. Для увеличения производительности скважин применяется метод создания в высокопроницаемых пропластках коротких и широких трещин проникающих за пределы зоны загрязнения, который называется технологией концевого экранирования (TSO).. Технология концевого экранирования является модификацией операции гидроразрыва , при которой создаются короткие трещины (несколько десятков метров) шириной до 30 мм. Это достигается путем контролируемого распространения трещины до запланированной длины и последующего ее закрепления проппантом, закачиваемым с рабочей жидкостью. Благодаря фильтрационным утечкам рабочей жидкости через поверхности трещины, концентрация проппанта возрастает на фронте закачки, что приводит к образованию проппантных пробок вблизи конца трещины, которые препятствуют ее дальнейшему распространению. Закачка пропанта , продолжаемая после остановки трещины , позволяет повысить давление внутри трещины, увеличивая тем самым ее раскрытие. При такой технологии ГРП уменьшаются затраты на проведение работ за счет уменьшения объемов закачиваемой жидкости и пропанта и сокращения времени проведения операций..

№5 слайд
Эффект образования перемычек
Содержание слайда: Эффект образования перемычек и повышенной упаковки проппанта в конце трещины считался одним из серьезных осложнений при проведении ГРП, сопровождающимся преждевременным выпадением проппанта и остановкой распространения трещин, но закачка могла быть продолжена и после этого еще некоторое время. Инженерное решение состояло в использовании данного эффекта для решения задач управления распространением трещин и оптимизации их раскрытия. Процесс образования перемычек и повышенной упаковки проппанта в конце трещины можно успешно использовать для создания коротких и широких трещин в высокопроницаемых пластах-коллекторах. Эффект образования перемычек и повышенной упаковки проппанта в конце трещины считался одним из серьезных осложнений при проведении ГРП, сопровождающимся преждевременным выпадением проппанта и остановкой распространения трещин, но закачка могла быть продолжена и после этого еще некоторое время. Инженерное решение состояло в использовании данного эффекта для решения задач управления распространением трещин и оптимизации их раскрытия. Процесс образования перемычек и повышенной упаковки проппанта в конце трещины можно успешно использовать для создания коротких и широких трещин в высокопроницаемых пластах-коллекторах. Увеличение раскрытия закрепленной трещины ведет к увеличению ее проводимости. Значение безразмерного параметра гидравлической проводимости C позволяет оценить продуктивность скважины после ГРП методом подстановки в формулу Дюпюи эффективного радиуса скважины вместо фактического. Эффективный радиус скважины пропорционален длине трещины , умноженной на функцию гидравлической проводимости трещины С. C = (W * k prop) / (x * k form ) , где   W – раскрытие трещины , k prop – проницаемость пропантной набивки , x – полудлина трещины , k form – проницаемость пласта .

№6 слайд
Особенности технологии TSO
Содержание слайда: Особенности технологии TSO:  предотвращает нежелательное распространение трещины после прекращения закачки. При использовании традиционных технологий ГРП после закрытия скважины большой объем буферной жидкости обычно остается перед рабочей жидкостью ГРП с проппантом , и поэтому трещина может продолжать распространяться, что может уменьшить проводимость трещины. возможность предотвращения выноса проппанта за счет достижения более равномерного распределения напряжений по упаковке проппанта. Трещины , созданные с использованием традиционных методов , смыкаются дольше, позволяя некоторому количеству проппанта осесть, что создает более высокие концентрации проппанта в нижней части трещины. В результате увеличивается вероятность локального каналообразования или формирование «карманов» в проппантной упаковке с низким сжимающим трещину напряжением, что облегчает вынос проппанта при добыче. Технология TSO, в которой фильтрационные утечки рабочей жидкости подавляются в меньшей мере для создания высоких концентраций проппанта на фронте закачки, обеспечивает более быстрое смыкание трещин и позволяет тем самым минимизировать вынос проппанта.  

№7 слайд
Расклинивающий агент.
Содержание слайда: Расклинивающий агент. Назначение проппанта. Проппант предназначен для предотвращения смыкания трещины после окончания закачивания. Проппант добавляется к жидкости глушения и закачивается вместе с ней. Возможности трещины транспортировать жидкость к стволу скважины, обусловлены пропускной способностью трещины. Обычно она определяется произведением проницаемости трещины и ширины трещины: S=K*W где K- проницаемость (миллидарси); W - ширина трещины (мм) Проницаемость трещины зависит от следующих взаимосвязанных факторов: типа, размера и однородности проппанта; степени его разрушения или деформации; количества и способа перемещения проппанта. На частицы проппанта действует напряжение закрытия трещины. В результате этого некоторые из частиц могут быть раздавлены или же, в мягком пласте вдавливаться в породу. На степень раздавливания или вдавливания влияют: прочность и размер проппанта; твердость пласта; напряжение закрытия, прилагаемое к слою проппанта

№8 слайд
Если частицы раздавливаются
Содержание слайда: Если частицы раздавливаются или вдавливаются в породу, пропускная способность трещины будет уменьшаться и может снизиться настолько, что проводимость слоя проппанта и проницаемость породы коллектора не будут слишком различаться. В этом случае результаты гидроразрыва пласта будут неудовлетворительными по причине потери проводимости трещины. К такому же результату может привести процесс образования полимерной корки на поверхности трещины и наличие определенного количества полимера , остающегося в проппантной упаковке. В процессе эксплуатации скважин после ГРП возможен интенсивный вынос проппанта с продукцией скважин. Это происходит если раскрытие закрепленной трещины превышает диаметр частиц проппанта в 5,5 раз, когда упаковка проппанта становится неустойчивой. Для предотвращения выноса проппанта применяются такие методы как создание коротких трещин (до 50 м) и добавление стекловолокон PropNET в проппантную упаковку. Стеклянные волокна, добавляемые в последние порции жидкости ГРП в количестве 1,5% по весу, создают внутреннюю структуру, удерживающую частицы проппанта на месте. При этом сохраняется высокая проводимость трещин. На месторождениях Западной Сибири технология PropNET используется в 90% операций по ГРП. (ЭТО НЕ ДЛЯ ПРЕЗЕНТАЦИИ, ОТДЕЛЬНО РАССКАЖУ). Если частицы раздавливаются или вдавливаются в породу, пропускная способность трещины будет уменьшаться и может снизиться настолько, что проводимость слоя проппанта и проницаемость породы коллектора не будут слишком различаться. В этом случае результаты гидроразрыва пласта будут неудовлетворительными по причине потери проводимости трещины. К такому же результату может привести процесс образования полимерной корки на поверхности трещины и наличие определенного количества полимера , остающегося в проппантной упаковке. В процессе эксплуатации скважин после ГРП возможен интенсивный вынос проппанта с продукцией скважин. Это происходит если раскрытие закрепленной трещины превышает диаметр частиц проппанта в 5,5 раз, когда упаковка проппанта становится неустойчивой. Для предотвращения выноса проппанта применяются такие методы как создание коротких трещин (до 50 м) и добавление стекловолокон PropNET в проппантную упаковку. Стеклянные волокна, добавляемые в последние порции жидкости ГРП в количестве 1,5% по весу, создают внутреннюю структуру, удерживающую частицы проппанта на месте. При этом сохраняется высокая проводимость трещин. На месторождениях Западной Сибири технология PropNET используется в 90% операций по ГРП. (ЭТО НЕ ДЛЯ ПРЕЗЕНТАЦИИ, ОТДЕЛЬНО РАССКАЖУ).

№9 слайд
Виды расклинивающих агентов
Содержание слайда: Виды расклинивающих агентов Одним из первых расклинивающих агентов был просеянный речной песок. Он содержал какое-то количество слишком больших частиц, которые не проходили в трещину. Это служило причиной образования мостов в скважине, подземных инструментах и в самой трещине. Из-за образования мостов происходит «стоп», в результате чего создается трещина меньшего размера, приходится заканчивать операцию по разрыву и нести дополнительные затраты на очистку ствола скважины от проппанта. Применяемый в настоящее время песок и другие виды расклинивающих агентов имеют менее угловатую поверхность и более точно классифицируются по размеру:

№10 слайд
Применяемые в настоящее время
Содержание слайда: Применяемые в настоящее время проппанты по прочности можно разделить на следующие группы : Применяемые в настоящее время проппанты по прочности можно разделить на следующие группы : кварцевые пески ( плотность до 2,65 г/см 3), синтетические проппанты средней прочности ( плотность 2,7-3,3 г/см 3), синтетические проппанты высокой прочности ( плотность 3,2-3,8 г/см 3). Высокая прочность проппанта обеспечивает сохранение трещины открытой длительное время. По глубине скважин проппанты имеют следующие области применения: кварцевые пески - до 2500 м; проппанты средней прочности - до 3500 м; проппанты высокой прочности - свыше 3500 м. С увеличением размера гранул увеличивается проницаемость упаковки проппанта, но снижается прочность и возникают проблемы с переносом проппанта вдоль трещины. С увеличением прочности проппанта увеличивается его стоимость и стоимость ГРП. Отсортированный силикатный песок SiO2 на сегодняшний день является преобладающим проппантом, который применяется при гидроразрыве и является наиболее экономичным. Однако его эффективность может быть ограничена из-за низкой сопротивляемости раздавливанию. В глубоко залегающих пластах с высоким давлением обычно используется более прочный проппант. В конце 1970-х начали использоваться частицы металлокерамического боксита, которые поддерживали высокую проводимость при очень высоком напряжении закрытия. Металлокерамический боксит как проппант состоит из высококачественной обожженной бокситной руды и имеет высокую стоимость. Более дешевыми и менее прочными являются проппанты изготовленные на основе аллюминевой керамики Interprop TM и Carboprop TM. Для достижения низкой плотности обожженная глина перемешивается с обожженным бокситом перед процессом обработки. Для контроля над обратным потоком при производстве ГРП применяется пропант со смоляным покрытием. В качестве смолы применялись термоактивные феноловые пластмассы, которые оседали в скважине. Также было обнаружено, что эти пластиковые покрытия улучшают прочность и проницаемость песка при более высоком напряжении закрытия. Пример фенолформальдегидной смолы – бакелит. В 1982г. получило распространение покрытие из предварительно отвержденной смолы. Данное покрытие обеспечивало более простое применение и контроль лучшего качества , чем смола , способная к затвердеванию. Преимущества пропанта с покрытием из предварительно отвержденной смолы : не образует уплотнений возможно применить в жидкостях на нефтяной и спиртовой основе, низкая растворимость в кислоте, Недостатки: процент раздавливания немного выше, чем у пропанта с покрытием из затвердевающих смол, покрытие удаляется горячей жидкостью или каустической содой.

№11 слайд
Свойства проппанта Условия и
Содержание слайда: Свойства проппанта Условия и ограничения применения проппанта с покрытием смолы, способной к затвердеванию: необходимое напряжение закрытия от 1000 до 2000 psi (для обеспечения сцепления между зернами проппанта и предотвращения выноса проппанта), минимальная температура отвердения 120-140 F в течении 200 часов (возможно использование катализатора), содержание алкоголя в жидкостях не выше 90%, жидкости на нефтяной основе удваивают время отвердения, покрытие легко стирается с проппанта, хранить при температуре не выше 100F и невысокой влажности во избежание затвердевания покрытия. Округлость и сферичность. Влияют на расположение зерен пропанта и выдерживаемую ими нагрузку. Округлость – это показатель кривизны поверхности песчинок. Сферичность – это показатель того , насколько близка форма песчинок к шару. Рекомендуемые показатели округлости и сферичности 0,6. Плотность. Это показатель абсолютной плотности пропанта по отношению к воде. Плотность проппанта определяет перенос и расположение проппанта вдоль трещины. Проппанты высокой плотности труднее поддерживать во взвешенном состоянии в жидкости разрыва при их транспортировании вдоль трещины. Заполнение трещины проппантом высокой плотности может быть достигнуто двумя путями - использованием высоковязких жидкостей, которые транспортируют проппант по длине трещины с минимальным его осаждением, либо применением маловязких жидкостей при повышенном темпе их закачки. Рекомендуемая предельная плотность 2,65 Объемная плотность. О.п. – это отношение массы материала к объему , который он занимает ( фунт/фут3 или грамм/см3).Рекомендованная максимальная о.п. 105 фунт/фут3 ( 1700 кг/ м3). Растворимость в кислоте(12% HCl – 3%HF).. Показатель количества имеющихся примесей и относительной стойкости пропанта к кислоте. Измеряется массовой концентрацией в процентах. Рекомендуемый максимум для песка 2% , для пропанта со смоляным покоытием 7%. Примеси мелкозернистых частиц. Этот показатель определяет количество примесей частиц глины, ила или другого мелкозернистого материала в проппанте. Содержание мелких частиц в проппанте может существенно понизить проницаемость трещины разрыва. Хорошо промытый и обработанный пропант не содержит большого количества мелкозернистых примесей. Единица измерения FTU. Рекомендуемый показатель 250 FTU (formation tubidity units ).

№12 слайд
Движение проппанта
Содержание слайда: Движение проппанта Сопротивляемость раздавливанию. Обозначает относительную прочность пропанта путем измерения количества материала, которое раздавливается под воздействием определенной нагрузки. Выражается в процентном содержании образованных мелких частиц. Рекомендуемые АНИ максимальные пределы : для 12/60 – 16% при давлении 3000 psi (204 Атм ) для 20/40 – 14% при давлении 4000 psi (272 Атм ) для 12/20 со смоляным покрытием – 25% при давлении 7500 psi (510 Атм ) для 16/20 со смоляным покрытием – 25% при давлении 10000 psi (680 Атм ) Сцепляемость. Измеряется массовой концентрацией в процентах. Обозначает силу прикрепления отдельных зерен проппанта друг к другу. Эффективность любого гидроразрыва в большой степени зависит от проводимости созданной расклиненной трещины. Проводимость в свою очередь зависит от размера и прочности проппанта и распределения проппанта в трещине. Необходимо отметить, что проппант не всегда движется с жидкостью гидроразрыва из-за фильтрация жидкости в породу, поэтому не происходит раскрытия трещины на 100% ее площади. Поверхности трещин не разделенные проппантом закроются обратно под действием существующего напряжения, то есть эти трещины сомкнутся. Таким образом, только расклиненные проппантом трещины будут доступны потоку жидкости и будут обеспечивать высокую эффективность ГРП. При движении частиц проппанта при гидроразрыве существует несколько ступеней: движение через устьевое оборудование; движение вниз через колонну НКТ; движение с изменением направления через перфорационные отверстия; транспортировка в трещине и дополнительное оседание , которое может произойти во время закрытия трещины

№13 слайд
Для того, чтобы определить
Содержание слайда: Для того, чтобы определить процесс движения проппанта по трещине необходимо иметь представление о форме трещины. Для того, чтобы определить процесс движения проппанта по трещине необходимо иметь представление о форме трещины. Трещина может иметь две основные формы: горизонтальная трещина. Это разрыв, распространяющийся по всем направлениям от ствола скважины в плоскости, перпендикулярной стволу скважины, вертикальная трещина. Это разрыв , распространяющийся в двух направлениях от ствола скважины. Вертикальные трещины могут быть представлены в виде эллипса. Для упрощения расчетов форму трещины принимают в виде прямоугольника и допускают, что жидкость имеет проход по всей высоте трещины и что проппант входит в трещину всегда одинаково по ширине трещины. Движение частиц проппанта зависит от следующих параметров: размер проппанта; плотность проппанта; скорость жидкости; вязкость жидкости; утечки жидкости; плотность жидкости; форма проппанта концентрация проппанта. Горизонтальная скорость частиц и скорость оседания (вертикальная скорость ) будут определять распределение частиц в трещине. Частица проппанта входит в трещину вместе с движущимся вперед потоком жидкости и продолжала бы свое горизонтальное движение с постоянной скоростью, если бы не контактировала со стенками породы. Если бы жидкость имела низкую вязкость (например, газ) или разница между плотностью жидкости и частиц была бы очень большой, происходило бы буксование и частица двигалась бы медленнее жидкости. Одновременно частица будет двигаться вертикально вниз под действием силы тяжести. Когда сила захватывания будет уравновешена силами гравитации произойдет оседание частицы. Скорость оседания частиц проппанта в ньютоновской жидкости зависит от диаметра частицы, вязкости жидкости, разницы между плотностью частицы и жидкости..

№14 слайд
Горизонтальная скорость
Содержание слайда: Горизонтальная скорость жидкости зависит от ширины трещины и расхода жидкости при закачивании. По мере продолжения операции по разрыву закачивается больше жидкости и трещина растет в длину и ширину. Если поддерживается постоянный темп закачки, скорость в любом месте по длине трещины со временем медленно понижается, т.к. увеличивается ширина трещины. К тому же в процессе закачки происходят потери флюида, что приводит к увеличению концентрации проппанта , уменьшению скорости движения жидкости и влияет на «скрытое оседание» проппанта. Горизонтальная скорость жидкости зависит от ширины трещины и расхода жидкости при закачивании. По мере продолжения операции по разрыву закачивается больше жидкости и трещина растет в длину и ширину. Если поддерживается постоянный темп закачки, скорость в любом месте по длине трещины со временем медленно понижается, т.к. увеличивается ширина трещины. К тому же в процессе закачки происходят потери флюида, что приводит к увеличению концентрации проппанта , уменьшению скорости движения жидкости и влияет на «скрытое оседание» проппанта. Таким образом, расстояние вдоль трещины, которое проходит частица проппанта прежде чем достигнуть основания трещины зависит от значения скорости жидкости, скорости оседания и высоты трещины. Скорость жидкости зависит от расхода при закачивании, ширины и высоты трещины в данный момент. Вертикальная скорость оседания будет зависеть от вязкости жидкости, диаметра и формы частицы и различия в плотности частицы и жидкости ЭТО НЕ ДЛЯ ПРЕЗЕНТАЦИИ, ОТДЕЛЬНО

№15 слайд
Требования, предъявляемые к
Содержание слайда: Требования, предъявляемые к жидкости ГРП

№16 слайд
Вывод Выбор проппанта и его
Содержание слайда: Вывод Выбор проппанта и его действие

№17 слайд
Литература
Содержание слайда: Литература

№18 слайд
Содержание слайда:

Скачать все slide презентации Выбор агента расклинивания при ГРП одним архивом:
Похожие презентации