Презентация Основы вейвлет-преобразования сигналов онлайн

На нашем сайте вы можете скачать и просмотреть онлайн доклад-презентацию на тему Основы вейвлет-преобразования сигналов абсолютно бесплатно. Урок-презентация на эту тему содержит всего 40 слайдов. Все материалы созданы в программе PowerPoint и имеют формат ppt или же pptx. Материалы и темы для презентаций взяты из открытых источников и загружены их авторами, за качество и достоверность информации в них администрация сайта не отвечает, все права принадлежат их создателям. Если вы нашли то, что искали, отблагодарите авторов - поделитесь ссылкой в социальных сетях, а наш сайт добавьте в закладки.
Презентации » Технология » Основы вейвлет-преобразования сигналов



Оцените!
Оцените презентацию от 1 до 5 баллов!
  • Тип файла:
    ppt / pptx (powerpoint)
  • Всего слайдов:
    40 слайдов
  • Для класса:
    1,2,3,4,5,6,7,8,9,10,11
  • Размер файла:
    389.50 kB
  • Просмотров:
    84
  • Скачиваний:
    1
  • Автор:
    неизвестен



Слайды и текст к этой презентации:

№1 слайд
ОСНОВЫ ВЕЙВЛЕТ-ПРЕОБРАЗОВАНИЯ
Содержание слайда: ОСНОВЫ ВЕЙВЛЕТ-ПРЕОБРАЗОВАНИЯ СИГНАЛОВ Ни одна вещь не возникает и не уничтожается, но каждая составляется из смешения существующих вещей или выделяется из них. Анаксагор. Древнегреческий философ, IV в.д.н.э.

№2 слайд
ВВЕДЕНИЕ Вейвлет
Содержание слайда: ВВЕДЕНИЕ Вейвлет – преобразование сигналов является обобщением спектрального анализа, типичный представитель которого – классическое преобразование Фурье. Термин "вейвлет" (wavelet) в переводе с английского означает "маленькая (короткая) волна". Вейвлеты - это обобщенное название семейств математических функций определенной формы, которые локальны во времени и по частоте, и в которых все функции получаются из одной базовой (порождающей) посредством ее сдвигов и растяжений по оси времени.

№3 слайд
Вейвлет-преобразования WT
Содержание слайда: Вейвлет-преобразования (WT) подразделяют на дискретное (DWT) непрерывное (CWT). DWT используется для преобразований и кодирования сигналов, CWT - для анализа сигналов. Вейвлет-преобразования в настоящее время принимаются на вооружение для огромного числа разнообразных применений, нередко заменяя обычное преобразование Фурье.

№4 слайд
Вейвлеты имеют вид коротких
Содержание слайда: Вейвлеты имеют вид коротких волновых пакетов с нулевым интегральным значением, локализованных по оси аргументов (независимых переменных), инвариантных к сдвигу и линейных к операции масштабирования (сжатия/растяжения). Вейвлеты имеют вид коротких волновых пакетов с нулевым интегральным значением, локализованных по оси аргументов (независимых переменных), инвариантных к сдвигу и линейных к операции масштабирования (сжатия/растяжения). По локализации во временном и частотном представлении вейвлеты занимают промежуточное положение между гармоническими (синусоидальными) функциями, локализованными по частоте, и функцией Дирака, локализованной во времени.

№5 слайд
Основная область применения
Содержание слайда: Основная область применения вейвлетных преобразований – анализ и обработка сигналов и функций, нестационарных во времени или неоднородных в пространстве, когда результаты анализа должны содержать не только общую частотную характеристику сигнала (распределение энергии сигнала по частотным составляющим), но и сведения об определенных локальных координатах, на которых проявляют себя те или иные группы частотных составляющих, или на которых происходят быстрые изменения частотных составляющих сигнала Основная область применения вейвлетных преобразований – анализ и обработка сигналов и функций, нестационарных во времени или неоднородных в пространстве, когда результаты анализа должны содержать не только общую частотную характеристику сигнала (распределение энергии сигнала по частотным составляющим), но и сведения об определенных локальных координатах, на которых проявляют себя те или иные группы частотных составляющих, или на которых происходят быстрые изменения частотных составляющих сигнала

№6 слайд
Не следует рассматривать
Содержание слайда: Не следует рассматривать вейвлет-методы обработки и анализа сигналов в качестве новой универсальной технологии для решения любых задач. Не следует рассматривать вейвлет-методы обработки и анализа сигналов в качестве новой универсальной технологии для решения любых задач. Но оно может существенно расширить инструментальную базу информационных технологий обработки данных.

№7 слайд
Преобразование Фурье Можно
Содержание слайда: Преобразование Фурье Можно отметить ряд недостатков разложения сигналов в ряды Фурье, которые привели к появлению оконного преобразования Фурье и стимулировали развитие вейвлетного преобразования. Основные из них: Ограниченная информативность анализа нестационарных сигналов и практически полное отсутствие возможностей анализа их особенностей (сингулярностей), т.к. в частотной области происходит «размазывание» особенностей сигналов (разрывов, ступенек, пиков и т.п.) по всему частотному диапазону спектра. Гармонические базисные функции разложения не способны в принципе отображать перепады сигналов с бесконечной крутизной типа прямоугольных импульсов, т.к. для этого требуется бесконечно большое число членов ряда Преобразование Фурье отображает глобальные сведения о частотах исследуемого сигнала и не дает представления о локальных свойствах сигнала при быстрых временных изменения его спектрального состава. вычисляются интегрированием по всему интервалу задания сигнала.

№8 слайд
Оконное преобразование Фурье
Содержание слайда: Оконное преобразование Фурье Частичным выходом из этой ситуации является оконное преобразование Фурье с движущейся по сигналу оконной функцией, имеющей компактный носитель. Временной интервал сигнала при большой его длительности разделяется на подинтервалы, и преобразование Фурье выполняется последовательно для каждого подинтервала в отдельности. Тем самым осуществляется переход к частотно-временному (частотно-координатному) представлению сигналов, при этом в пределах каждого подинтервала сигнал "считается" стационарным

№9 слайд
Содержание слайда:

№10 слайд
По спектру сигнала в целом
Содержание слайда: По спектру сигнала в целом можно судить о наличии в его составе гармонических колебаний на трех частотах. Оконное преобразование не только подтверждает данное заключение, но и показывает конкретную локальность колебаний по интервалу сигнала и соотношение между амплитудами этих колебаний. По спектру сигнала в целом можно судить о наличии в его составе гармонических колебаний на трех частотах. Оконное преобразование не только подтверждает данное заключение, но и показывает конкретную локальность колебаний по интервалу сигнала и соотношение между амплитудами этих колебаний.

№11 слайд
Принцип
Содержание слайда: Принцип вейвлет-преобразования Гармонические базисные функции преобразования Фурье предельно локализованы в частотной области (до импульсных функций Дирака при Т  ) и не локализованы во временной (определены во всем временном интервале от - до ). Их противоположностью являются импульсные базисные функции типа импульсов Кронекера, которые предельно локализованы во временной области и "размыты" по всему частотному диапазону

№12 слайд
Вейвлеты по локализации в
Содержание слайда: Вейвлеты по локализации в этих двух представлениях можно рассматривать как функции, занимающие промежуточное положение между гармоническими и импульсными функциями. Они должны быть локализованными как во временной, так и в частотной области представления. Вейвлеты по локализации в этих двух представлениях можно рассматривать как функции, занимающие промежуточное положение между гармоническими и импульсными функциями. Они должны быть локализованными как во временной, так и в частотной области представления.

№13 слайд
Функция изменения частотной
Содержание слайда: Функция изменения частотной независимой переменной в спектральном представлении сигналов отображается во временном представлении растяжением/сжатием сигнала. Для вейвлетного базиса это можно выполнить функцией типа y(t) => y(amt), a = const, m = 0, 1, … , M, Однако локальность функции y(t) на временной оси требует дополнительной независимой переменной последовательных переносов (сдвигов) функции y(t) вдоль оси, типа y(t) => y(t+k). C учетом обеих условий одновременно структура базисной функции может быть принята следующей: y(t) => y(amt+k).

№14 слайд
Отсюда следует, что
Содержание слайда: Отсюда следует, что произвольная функция пространства может быть представлена в виде ряда (разложения по базису ymk(t)): Отсюда следует, что произвольная функция пространства может быть представлена в виде ряда (разложения по базису ymk(t)):

№15 слайд
Простой пример функции Хаара
Содержание слайда: Простой пример: функции Хаара

№16 слайд
Вейвлетный спектр , в отличие
Содержание слайда: Вейвлетный спектр , в отличие от преобразования Фурье, является двумерным и определяет двумерную поверхность в пространстве переменных m и k. При графическом представлении параметр растяжения/сжатия спектра m откладывается по оси абсцисс, параметр локализации k по оси ординат – оси независимой переменной сигнала. Математику процесса вейвлетного разложения сигнала в упрощенной форме рассмотрим на примере разложения сигнала s(t) вейвлетом Хаара с тремя последовательными по масштабу m вейвлетными функциями с параметром а=2, при этом сам сигнал s(t) образуем суммированием этих же вейвлетных функций с одинаковой амплитудой с разным сдвигом от нуля

№17 слайд
Содержание слайда:

№18 слайд
Содержание слайда:

№19 слайд
На рис. приведен пример
Содержание слайда: На рис. приведен пример графического отображения вейвлетной поверхности реального физического процесса. Вид поверхности определяет изменения во времени спектральных компонент различного масштаба и называется частотно-временным спектром. На рис. приведен пример графического отображения вейвлетной поверхности реального физического процесса. Вид поверхности определяет изменения во времени спектральных компонент различного масштаба и называется частотно-временным спектром. Поверхность изображается на рисунках, как правило, в виде изолиний или условными цветами. Для расширения диапазона масштабов может применяться логарифмическая шкала

№20 слайд
ОСНОВЫ ВЕЙВЛЕТ -
Содержание слайда: ОСНОВЫ ВЕЙВЛЕТ - ПРЕОБРАЗОВАНИЯ В основе вейвлет-преобразований, в общем случае, лежит использование двух непрерывных, взаимозависимых и интегрируемых по независимой переменной функций: Вейвлет-функции (t), как psi-функции времени с нулевым значением интеграла и частотным фурье-образом (ω). Этой функцией, которую обычно и называют вейвлетом, выделяются детали сигнала и его локальные особенности. Масштабирующей функции φ(t), как временной скейлинг-функции phi с единичным значением интеграла, с помощью которой выполняется грубое приближение (аппроксимация) сигнала.

№21 слайд
В качестве анализирующих
Содержание слайда: В качестве анализирующих вейвлетов обычно выбираются функции, хорошо локализованные и во временной, и в частотной области. Пример временного и частотного образа функции приведен на рис. В качестве анализирующих вейвлетов обычно выбираются функции, хорошо локализованные и во временной, и в частотной области. Пример временного и частотного образа функции приведен на рис.

№22 слайд
Непрерывное
Содержание слайда: Непрерывное вейвлет-преобразование (НВП, CWT- Continious Wavelet Transform) Допустим, что мы имеем функции s(t) с конечной энергией (нормой) в пространстве L2(R), определенные по всей действительной оси R(-, ). Для финитных сигналов с конечной энергией средние значения сигналов, как и любых других функций из пространства L2(R), должны стремиться к нулю на ±. Непрерывным вейвлет-преобразованием (или вейвлетным образом) функции s(t)  L2(R) называют функцию двух переменных: С(a,b) = s(t), ψ(a,b,t) = , a, b  R, a ≠ 0.

№23 слайд
Понятие масштаба ВП имеет
Содержание слайда: Понятие масштаба ВП имеет аналогию с масштабом географических карт. Большие значения масштаба соответствуют глобальному представлению сигнала, а низкие значения масштаба позволяют различить детали. В терминах частоты низкие частоты соответствуют глобальной информации о сигнале, а высокие частоты - детальной информации и особенностям, которые имеют малую протяженность, т.е. масштаб вейвлета, как единица шкалы частотно-временного представления сигналов, обратен частоте. Масштабирование, как математическая операция, расширяет или сжимает сигнал. Большие значения масштабов соответствуют расширениям сигнала, а малые значения - сжатым версиям. В определении вейвлета коэффициент масштаба а стоит в знаменателе. Соответственно, а > 1 расширяет сигнал, а < 1 сжимает его.

№24 слайд
Процедура преобразования
Содержание слайда: Процедура преобразования стартует с масштаба а=1 и продолжается при увеличивающихся значениях а, т.e. анализ начинается с высоких частот и проводится в сторону низких частот. Первое значение 'а' соответствует наиболее сжатому вейвлету. При увеличении значения 'а' вейвлет расширяется. Вейвлет помещается в начало сигнала (t=0), перемножается с сигналом, интегрируется на интервале своего задания и нормализуется на 1/ . При задании четных или нечетных функций вейвлетов результат вычисления С(a,b) помещается в точку (a=1, b=0) масштабно-временного спектра преобразования. Сдвиг b может рассматриваться как время с момента t=0, при этом координатная ось b, по существу, повторяет временную ось сигнала. Для полного включения в обработку всех точек входного сигнала требуется задание начальных (и конечных) условий преобразования (определенных значений входного сигнала при t<0 и t>tmax на полуширину окна вейвлета). При одностороннем задании вейвлетов результат относится, как правило, к временному положению средней точки окна вейвлета.

№25 слайд
Затем вейвлет масштаб а
Содержание слайда: Затем вейвлет масштаб а=1 сдвигается вправо на значение b и процедура повторяется. Получаем значение, соответствующее t=b в строке а=1 на частотно-временном плане. Процедура повторяется до тех пор, пока вейвлет не достигнет конца сигнала. Таким образом получаем строку точек на масштабно-временном плане для масштаба а=1. Затем вейвлет масштаб а=1 сдвигается вправо на значение b и процедура повторяется. Получаем значение, соответствующее t=b в строке а=1 на частотно-временном плане. Процедура повторяется до тех пор, пока вейвлет не достигнет конца сигнала. Таким образом получаем строку точек на масштабно-временном плане для масштаба а=1. Для вычисления следующей масштабной строки значение а увеличивается на некоторое значение. При НВП в аналитической форме Δb0 и Δa0. При выполнении преобразования в компьютере вычисляется аппроксимация с увеличением обоих параметров с определенным шагом. Тем самым мы осуществляем дискретизацию масштабно-временной плоскости.

№26 слайд
Начальное значение
Содержание слайда: Начальное значение масштабного коэффициента может быть и меньше 1. В принципе, для детализации самых высоких частот сигнала минимальных размер окна вейвлета не должен превышать периода самой высокочастотной гармоники. Если в сигнале присутствуют спектральные компоненты, соответствующие текущему значению а, то интеграл произведения вейвлета с сигналом в интервале, где эта спектральная компонента присутствует, дает относительно большое значение. В противном случае - произведение мало или равно нулю, т.к. среднее значение вейвлетной функции равно нулю. С увеличением масштаба (ширины окна) вейвлета преобразование выделяет все более низкие частоты. Начальное значение масштабного коэффициента может быть и меньше 1. В принципе, для детализации самых высоких частот сигнала минимальных размер окна вейвлета не должен превышать периода самой высокочастотной гармоники. Если в сигнале присутствуют спектральные компоненты, соответствующие текущему значению а, то интеграл произведения вейвлета с сигналом в интервале, где эта спектральная компонента присутствует, дает относительно большое значение. В противном случае - произведение мало или равно нулю, т.к. среднее значение вейвлетной функции равно нулю. С увеличением масштаба (ширины окна) вейвлета преобразование выделяет все более низкие частоты.

№27 слайд
Содержание слайда:

№28 слайд
Обратное преобразование Так
Содержание слайда: Обратное преобразование Так как форма базисных функций (a,b,t) зафиксирована, то вся информация о сигнале в S(t) переносится на значения функции С(a,b). Точность обратного интегрального вейвлет-преобразования зависит от выбора базисного вейвлета и способа построения базиса, т.е. от значений базисных параметров a, b. Для практических целей непрерывного преобразования часто бывает вполне достаточна устойчивость и "приблизительность" ортогональности системы разложения функций. Под устойчивостью понимается достаточно точная реконструкция произвольных сигналов. Для ортонормированных вейвлетов обратное вейвлет-преобразование записывается с помощью того же базиса, что и прямое:

№29 слайд
Обратное преобразование
Содержание слайда: Обратное преобразование

№30 слайд
ВЕЙВЛЕТНАЯ ОЧИСТКА ОТ ШУМОВ И
Содержание слайда: ВЕЙВЛЕТНАЯ ОЧИСТКА ОТ ШУМОВ И СЖАТИЕ СИГНАЛОВ Типовой метод подавления шумов – удаление высокочастотных составляющих из спектра сигнала. Применительно к вейвлетным разложениям это может быть реализовано непосредственно удалением детализирующих коэффициентов высокочастотных уровней. Вейвлеты имеют в этом отношении более широкие возможности. Шумовые компоненты, и особенно большие случайные выбросы значений сигналов, можно также рассматривать в виде множеств локальных особенностей сигналов. Задавая некоторый порог для их уровня и срезая по нему детализирующие коэффициенты, можно не только уменьшать уровень шумов, но и устанавливать пороговые ограничения на нескольких уровнях разложения с учетом конкретных характеристик шумов и сигналов для различных типов вейвлетов. Это позволяет создавать адаптивные системы очистки сигналов от шумов в зависимости от их особенностей.

№31 слайд
Операция сжатия сигналов с
Содержание слайда: Операция сжатия сигналов с удалением малозначимых значений вейвлет - коэффициентов также выполняется на основе определенных пороговых ограничений их значений, и во многом практически тождественна операциям удаления шумов Операция сжатия сигналов с удалением малозначимых значений вейвлет - коэффициентов также выполняется на основе определенных пороговых ограничений их значений, и во многом практически тождественна операциям удаления шумов

№32 слайд
Модель зашумленного сигнала
Содержание слайда: Модель зашумленного сигнала обычно принимается аддитивной: s(n) = f(n)+k·e(n) с равномерным шагом по аргументу n, где f(n) – полезная информационная составляющая, e(n) – шумовой сигнал, например, белый шум определенного уровня со средним нулевым значением. Процедура удаления шума выполняется с использованием ортогональных вейвлетов и включает в себя следующие операции: Модель зашумленного сигнала обычно принимается аддитивной: s(n) = f(n)+k·e(n) с равномерным шагом по аргументу n, где f(n) – полезная информационная составляющая, e(n) – шумовой сигнал, например, белый шум определенного уровня со средним нулевым значением. Процедура удаления шума выполняется с использованием ортогональных вейвлетов и включает в себя следующие операции: - Вейвлет-разложение сигнала s(n) до уровня N. Значение уровня N определяется частотным спектром информационной части f(n) сигнала, которую желательно оставлять в рядах аппроксимационных коэффициентов. Тип и порядок вейвлета может существенно влиять на качество очистки сигнала от шума в зависимости как от формы сигналов f(n), так и от корреляционных характеристик шумов. - Задание типа и пороговых уровней очистки по известным априорным данным о характере шумов или по определенным критериям шумов во входном сигнале. Пороговые уровни очистки могут быть гибкими (в зависимости от номера уровня разложения) или жесткими (глобальными). - Модификация коэффициентов детализации вейвлет-разложения в соответствии с установленными условиями очистки. - Восстановление сигнала на основе коэффициентов аппроксимации и модифицированных детализационных коэффициентов.

№33 слайд
Пример
Содержание слайда: Пример

№34 слайд
Пример удаления шумов с
Содержание слайда: Пример удаления шумов с настройкой локальных порогов уровней

№35 слайд
На рис. отпечаток пальца
Содержание слайда: На рис. отпечаток пальца внизу сжат в десятки раз, но разрешающая способность по основным линиям дактилоскопии при этом практически не изменилась. Сжатие изображений в настоящее время широко применяется при хранении огромных объемов технической информации. На рис. отпечаток пальца внизу сжат в десятки раз, но разрешающая способность по основным линиям дактилоскопии при этом практически не изменилась. Сжатие изображений в настоящее время широко применяется при хранении огромных объемов технической информации.

№36 слайд
Изменение вейвлет-спектра
Содержание слайда: Изменение вейвлет-спектра

№37 слайд
Удаление шумов
Содержание слайда: Удаление шумов

№38 слайд
Содержание слайда:

№39 слайд
ОЧИСТКА СИГНАЛОВ ОТ ШУМА В
Содержание слайда: ОЧИСТКА СИГНАЛОВ ОТ ШУМА В ПАКЕТЕ GUI

№40 слайд
Содержание слайда:

Скачать все slide презентации Основы вейвлет-преобразования сигналов одним архивом: