Презентация Ekonometria. Estymacja – po co i dlaczego? онлайн

На нашем сайте вы можете скачать и просмотреть онлайн доклад-презентацию на тему Ekonometria. Estymacja – po co i dlaczego? абсолютно бесплатно. Урок-презентация на эту тему содержит всего 48 слайдов. Все материалы созданы в программе PowerPoint и имеют формат ppt или же pptx. Материалы и темы для презентаций взяты из открытых источников и загружены их авторами, за качество и достоверность информации в них администрация сайта не отвечает, все права принадлежат их создателям. Если вы нашли то, что искали, отблагодарите авторов - поделитесь ссылкой в социальных сетях, а наш сайт добавьте в закладки.
Презентации » Экономика и Финансы » Ekonometria. Estymacja – po co i dlaczego?



Оцените!
Оцените презентацию от 1 до 5 баллов!
  • Тип файла:
    ppt / pptx (powerpoint)
  • Всего слайдов:
    48 слайдов
  • Для класса:
    1,2,3,4,5,6,7,8,9,10,11
  • Размер файла:
    1.33 MB
  • Просмотров:
    93
  • Скачиваний:
    0
  • Автор:
    неизвестен



Слайды и текст к этой презентации:

№1 слайд
Ekonometria Wykad dr hab.
Содержание слайда: Ekonometria Wykład 5 dr hab. Małgorzata Radziukiewicz, prof. PSW Biała Podlaska

№2 слайд
Estymacja po co i dlaczego?
Содержание слайда: Estymacja – po co i dlaczego? Jeśli jesteśmy w stanie zebrać wszystkich informacji na temat interesującej nas zbiorowości wówczas do pełnego opisu wystarczą nam metody statystyki opisowej. W wielu jednak sytuacjach mówiąc o zbiorowości opieramy się na danych pochodzących z próby. Aby prawidłowo uogólniać wyniki z próby na populację generalną należy stosować metody statystyki matematycznej.

№3 слайд
Estymacja po co i dlaczego?
Содержание слайда: Estymacja – po co i dlaczego? Procedur uogólniania wyników z próby losowej na całą zbiorowość dostarcza dział wnioskowania statystycznego. Estymacja zatem to dział wnioskowania statystycznego będący zbiorem metod pozwalających na uogólnianie wyników badania próby losowej na nieznaną postać i parametry rozkładu zmiennej losowej całej populacji oraz szacowanie błędów wynikających z tego uogólnienia.

№4 слайд
W zalenoci od szukanej cechy
Содержание слайда: W zależności od szukanej cechy rozkładu można podzielić metody estymacji na dwie grupy: Estymacja parametryczna - metody znajdowania nieznanych wartości parametrów rozkładu Estymacja nieparametryczna - metody znajdowania postaci rozkładu populacji

№5 слайд
Estymacja po co i dlaczego?
Содержание слайда: Estymacja – po co i dlaczego? Wnioskowanie przybiera postać: estymacji parametrów statystycznych czyli szacowania nieznanych wartości parametrów np. średniej arytmetycznej w zbiorowości generalnej, odchylenia standardowego. testowania hipotez, które z kolei dotyczy weryfikacji przypuszczeń odnośnie określonego poziomu zmiennej losowej lub kształtu rozkładu w populacji generalnej.

№6 слайд
Zatem losujemy z
Содержание слайда: Zatem losujemy z N-elementowej populacji generalnej n-elementową próbę losową Ze względu na niemożność poznania parametru θ z populacji generalnej wnioskujemy o wartości parametru θ w oparciu o zbadanie próby

№7 слайд
Содержание слайда:

№8 слайд
dwa podejcia szacowania
Содержание слайда: dwa podejścia szacowania (estymacji) 1. punktowe szacowanie parametru θ (lub innych parametrów populacji generalnej) – podajemy jedną liczbę odpowiadającą przypuszczalnej wartości parametru 2. przedziałowe szacowanie parametru – podajemy pewien przedział, w którym przypuszczalnie znajduje się prawdziwa wartość parametru

№9 слайд
Liczb stanowic oszacowanie
Содержание слайда: Liczbą stanowiącą oszacowanie parametru θ musi być wartość jakiejś statystyki obliczonej na podstawie próby

№10 слайд
Содержание слайда:

№11 слайд
Estymator szacowany parametr
Содержание слайда: Estymator – szacowany parametr Estymator – wielkość (charakterystyka, miara), obliczona na podstawie próby, służąca do oceny wartości nieznanych parametrów populacji generalnej.

№12 слайд
Estymator, jak kada
Содержание слайда: Estymator, jak każda statystyka z próby ma pewien rozkład. Zadanie: - jak dobrać estymator, aby jego rozkład gwarantował najlepsze oszacowanie?

№13 слайд
Wasnoci dobrego estymatora
Содержание слайда: Własności dobrego estymatora Wartości, jakie może przyjmować estymator Z parametru θ są różne dla różnych prób pochodzących z tej samej populacji; Dlatego też nie można oczekiwać, że otrzymany estymator Z będzie prawdziwą wartością estymowanego parametru θ; Powstaje więc błąd losowy parametru θ, który dla danej próby jest różnicą między oceną parametru dokonaną na podstawie tej próby a prawdziwa wartością parametru: ε = Z - θ

№14 слайд
Podane cechy estymatora .
Содержание слайда: Pożądane cechy estymatora 1. nieobciążoność – aby estymator dawał gwarancję, że oszacowania nie będą w sposób systematyczny zaniżane ani zawyżane; 2. zgodność – w miarę wzrostu próby (n) prawdopodobieństwo, że różnica między estymatorem a parametrem jest dowolnie małe, zbliża się do jedności; 3. efektywność – z 2-óch nieobciążonych estymatorów określonego parametru ten jest najefektywniejszy, który ma mniejszą wariancję.

№15 слайд
Estymator nieobciony
Содержание слайда: Estymator nieobciążony Estymator nieobciążony to ten, którego przeciętna wartość jest dokładnie równa wartości szacowanego parametru tzn. zachodzi równość: E( Zn) = θ Innymi słowy, przy wielokrotnym losowaniu próby średnia z wartości przyjmowanych przez estymator nieobciążony jest równa wartości szacowanego parametru. Obciążoność oznacza, że oszacowania dostarczone przez taki estymator są obarczone błędem systematycznym

№16 слайд
Estymator obciony Obciono
Содержание слайда: Estymator obciążony Obciążoność oznacza, że oszacowania dostarczone przez taki estymator są obarczone błędem systematycznym. Różnica: Bn = E (Zn ) ) – θ nazywa się obciążeniem estymatora. Jeżeli Bn > 0 to estymator Zn daje przeciętnie za wysokie oceny parametru θ; Jeżeli Bn < 0 to estymator Zn daje przeciętnie za niskie oceny parametru θ.

№17 слайд
Jeli speniony jest warunek co
Содержание слайда: Jeśli spełniony jest warunek: co jest równoważne warunkowi: to estymator taki nazywa się estymatorem asymptotycznie nieobciążonym. Uwaga! Postulat nieobciążoności estymatora parametru oznacza praktyczne żądanie, aby rozkład estymatora był scentrowany wokół prawdziwej wartości parametru, a więc by jego odchylenia od parametru miały charakter losowy.

№18 слайд
Estymator - zgodno Estymator
Содержание слайда: Estymator - zgodność Estymator Z parametru θ nazywa się estymatorem zgodnym, jeśli wraz ze wzrostem liczebności próbki n jest on stochastycznie zbieżny do wartości estymowanego parametru θ, tzn. jeśli jest spełniony warunek: gdzie σ jest dowolnie mała liczbą dodatnią. Zgodność estymatora Z oznacza, że wraz ze wzrostem liczebności próbki n, prawdopodobieństwo dowolnie małej różnicy między wartością estymatora Z a estymowanym parametrem θ dąży do 1. Wynika stąd, że warto powiększyć próbkę, ponieważ przy wzroście n rośnie prawdopodobieństwo tego, że wartość estymatora parametru Z będzie się niewiele różnić od prawdziwej wartości estymowanego parametru θ, powodując tym samym mały błąd estymacji.

№19 слайд
Estymator - efektywno
Содержание слайда: Estymator - efektywność Estymator nieobciążony, który ma najmniejszą wariancję, nazywa się estymatorem najefektywniejszym. Przy estymacji punktowej sytuacja jest tym korzystniejsza, im wartość Zn oscyluje bliżej σ, a więc im wariancja jest mniejsza. Wyrażenie: jest wariancją estymatora Zn. Uwaga! Estymator jest tym efektywniejszy, im mniejsza jest jego wariancja i odchylenie standardowe.

№20 слайд
Ze wzgldu na form wyniku
Содержание слайда: Ze względu na formę wyniku estymacji wyróżniamy: Estymacja punktowa –gdy szacujemy liczbową wartość określonego parametru rozkładu cechy w całej populacji Estymacja przedziałowa –gdy wyznaczamy granice przedziału liczbowego, w których, z określonym prawdopodobieństwem, mieści się prawdziwa wartość szacowanego parametru.

№21 слайд
Wprowadzenie do problematyki
Содержание слайда: Wprowadzenie do problematyki estymacji parametrów modeli ekonometrycznych Problemy estymacji należą do trudnych zagadnień; Nie ma jednej uniwersalnej metody estymacji; Strona rachunkowa metod estymacji jest zawiła, więc dla większych modeli (z wieloma zmiennymi objaśniającymi) estymacja wymaga wykorzystania komputerów; Estymacja jest jednym z najważniejszych działów statystyki matematycznej Estymacja jest o tyle ważna, że od estymacji zależy jakość modelu ekonometrycznego i jego praktyczna użyteczność

№22 слайд
Estymacja parametrw modelu
Содержание слайда: Estymacja parametrów modelu ekonometrycznego Przedmiotem estymacji w badaniu ekonometrycznym są parametry sformułowanych wcześniej modeli ekonometrycznych Ogólny zapis modelu ekonometrycznego: Y= f(X1, X2 , ….,Xk , α1, α2,…,αk , ξ) (1) gdzie: Y- zmienna objaśniana; X1, X2, ….., Xk – zmienne objaśniające α1, α2 ,…., αk – parametry strukturalne modelu ξ – składnik losowy

№23 слайд
Содержание слайда:

№24 слайд
Содержание слайда:

№25 слайд
Содержание слайда:

№26 слайд
Содержание слайда:

№27 слайд
Содержание слайда:

№28 слайд
Содержание слайда:

№29 слайд
Estymacja parametrw modelu
Содержание слайда: Estymacja parametrów modelu ekonometrycznego Z reguły estymatory uzyskuje się w wyniku zastosowania procedury numerycznej zwanej metodą najmniejszych kwadratów. Estymatory mają wówczas pożądane własności, o ile spełnione są pewne istotne założenia. Założenia te dotyczą głównie: - specyfikacji modelu i - własności składnika losowego.

№30 слайд
Zaoenia model i dane Zaoenie
Содержание слайда: Założenia: model i dane Założenie 1 Model jest liniowy względem parametrów tj.: Yt = α0 + α1 X1t + α2 X2t +..... + αk Xkt + ξt gdzie t= 1,2,….n Założenie 2 Zmienne objaśniające są nielosowe Zmienna Y jest losowa, bowiem jest funkcją losowego ξ. Przyjmijmy Y- koszt produkcji, X – wartość produkcji. W modelu mogą zmieniać się rolami. Uwaga! Niekonsekwencja klasycznej ekonometrii – w efekcie Y traktowana jest raz jako losowa a X nie i odwrotnie

№31 слайд
Zaoenia model i dane Zaoenie
Содержание слайда: Założenia: model i dane Założenie 3 Liczba obserwacji n (wielkość próby n) jest większa od liczby parametrów do oszacowania: n > k+1 Parametrów jest k+1: wyraz wolny + k parametrów przy zmiennych X W praktyce żądamy aby n była liczbą kilkakrotnie większą od k+1 (np. dwukrotnie)

№32 слайд
Zaoenia model i dane Zaoenie
Содержание слайда: Założenia: model i dane Założenie 4 Żadna ze zmiennych nie jest kombinacją liniową innych zmiennych objaśniających (włączając w ten zbiór także „sztuczną” zmienną X0 = 1, która „stoi” przy wyrazie wolnym modelu) Jest to założenie o braku współliniowości. Nie istnieje zależność liniowa między wartościami z próby dla jakichkolwiek 2-óch, lub większej ilości zmiennych objaśniających. Chodzi to, aby żadna ze zmiennych nie wnosiła do modelu tych informacji które już są wniesione przez inne zmienne.

№33 слайд
Zaoenia skadnik losowy modelu
Содержание слайда: Założenia: składnik losowy modelu Założenie 5 Składnik losowy ξ jest zmienną losową Składnik losowy ma wartość oczekiwaną równa zeru dla wszystkich i=1,2,…., n: E (ξi ) = 0 Oznacza to, że czynniki nie uwzględnione w modelu nie oddziałują w systematyczny sposób na średnią wartość zmiennej Y: - wpływy dodatnie (+) i wpływy ujemne(-) „znoszą się” i w sumie efekt jest zerowy.

№34 слайд
Zaoenia skadnik losowy modelu
Содержание слайда: Założenia: składnik losowy modelu Założenie 6 Składnik losowy ξ jest zmienną losową Wariancja zmiennej losowej ξi jest taka sama dla wszystkich obserwacji D2 (ξi ) = σ2 dla i=1,2,…., n: Przyjmujemy, że zmienne losowe mają jednakową dyspersję. Oznacza to, że wpływy na Y czynników nie ujętych w modelu mają takie same rozproszenie (niezależnie od numeru obserwacji) Założenie o jednakowych wariancjach nosi nazwę założenia o homoscedastyczności. Jego przeciwieństwem jest założenie o heteroscedastyczności (nierówna dyspersja)

№35 слайд
Zaoenia skadnik losowy modelu
Содержание слайда: Założenia: składnik losowy modelu Założenie 7 Składnik losowy ξ jest zmienną losową Zmienne losowej ξi są nieskorelowane, czyli nie występuje autokorelacja składników losowych): cov (ξi , ξj ) = σi,j (ξ) = 0 dla i≠j i=1,2,…., n; j=1,2,…., n : Oznacza to, że wpływy na Y czynników nie ujętych w modelu są nieskorelowane pomiędzy różnymi obserwacjami Jest to założenie często niespełnione w modelach trendu

№36 слайд
Zaoenia skadnik losowy modelu
Содержание слайда: Założenia: składnik losowy modelu Założenie 8 Każdy ze składników losowych ξi ma rozkład normalny. Biorąc pod uwagę założenia 4i 5 oznacza to, że ξi ma rozkład N (0, σ2) dla i= 1,2,….,n Niekiedy założenia 1-7 uzupełnia się o założenie 8 a model określa się wówczas mianem klasycznego modelu normalnej regresji liniowej Założenie 8 ułatwia konstruowanie hipotez statystycznych służących weryfikacji modelu Założenia dotyczace składnika losowego są nieznane, sprawdzone mogą być dopiero po oszacowaniu parametrów modelu

№37 слайд
Model jest liniowy wzgldem
Содержание слайда: Model jest liniowy względem parametrów tj.: Yt = α0 + α1 X1t + α2 X2t +..... + αk Xkt + ξt gdzie t= 1,2,….n Wielkości parametrów αj (j= 0,1,2…,k) w modelu liniowym są niewiadomymi’ Po to by uzyskać wiedzę na temat wielkości parametrów modelu musimy posłużyć się danymi empirycznymi Y i Xk (k=1,2,….,n). Na podstawie danych szacujemy nieznane parametry αi na postawie reakcji zmiennej zależnej na zmiany wielkości zmiennych niezależnych zaobserwowanych w próbie. To co uzyskujemy na podstawie danych jest jedynie szacunkiem i będzie mniej lub bardziej dokładnym przybliżeniem prawdziwych wielkości parametrów αi. W rezultacie oszacowania parametrów uzyskane na podstawie 2-óch prób z reguły będą różne.

№38 слайд
Wniosek Oszacowania
Содержание слайда: Wniosek: Oszacowania nielosowych parametrów są losowe. Będąc jedynie niedokładnym przybliżeniem prawdziwych wielkości parametrów mogą różnić się w zależności od wylosowanej próby. Niedokładności w oszacowaniach wielkości parametrów wynikają z zaburzeń losowych (ξ), które uniemożliwiają dokładne zmierzenie parametrów modelu.

№39 слайд
Wartoci dopasowane i reszty
Содержание слайда: Wartości dopasowane i reszty Znajdowanie estymatorów (oszacowań) parametrów α0 , α1 .... αk (j=0,1,2....k) określamy mianem regresji liniowej yi na x1i , …, xki . Zgodnie z przyjętą konwencją oszacowania nieznanych parametrów α0 , α1 .... αk uzyskanych za pomocą MNK oznaczamy zwykle α0 , α1 .... αk . Przewidywane na podstawie oszacowanego modelu wartości zmiennej zależnej Y nazywamy wartością teoretyczną (dopasowaną): = a0 + a1 X1 + a2 X2 +..... + ak Xk Wartości dopasowane różnią się od rzeczywistych wartości Y, ponieważ w modelu oszacowanym zamiast prawdziwych (nieznanych) wartości parametrów α0 , α1 .... αk używamy ich oszacowań α0 , α1 .... αk i pomijamy błąd losowy

№40 слайд
Wartoci dopasowane i reszty
Содержание слайда: Wartości dopasowane i reszty Reszty definiujemy jako różnicę między wartością zaobserwowaną zmiennej zależnej (objaśnianej) Y, a wartością dopasowaną tej zmiennej: e = Y- (a0 + a1 X1 + a2 X2 +..... + ak Xk ) e = Y- a0 - a1 X1 - a2 X2 -..... - ak Xk Relację między resztami, obserwacjami i oszacowaniami parametrów można zapisać w sposób następujący: = a0 + a1 X1 + a2 X2 +..... + ak Xk + e Taki zapis pokazuje „pokrewieństwo” między α0 , α1 ... αk i a0 , a1 .... ak oraz między ξ i e. Tak jak a0 , a1 .... ak są oszacowaniami α0 , α1 ... αk tak reszty e stanowią oszacowania składnika losowego ξ. Uwaga! Reszty e nie są równe ξ

№41 слайд
Wartoci dopasowane i reszty
Содержание слайда: Wartości dopasowane i reszty Model jest tym lepiej dopasowany, im mniejsza jest odległość wartości teoretycznych od wartości obserwowanych Najlepiej dopasowanym jest ten model, w którym reszty są - co do wartości bezwzględnych – najmniejsze. Estymator MNK znajdujemy, szukając takich a0 , a1.. ak dla których łączna odległość jest najmniejsza

№42 слайд
Rysunek i . Ilustracja metody
Содержание слайда: Rysunek 1 i 2. Ilustracja metody najmniejszych kwadratów Reasumując: Do poszukiwania najlepiej dopasowanej prostej stosuje się kryterium minimalizacji sumy kwadratów odchyleń. Metoda wyznaczania parametrów prostej oparta na tym kryterium nosi nazwę metody najmniejszych kwadratów (MNK). Stosując MNK wyznacza się na podstawie danych (xi, yi), i=1,2,…, n, parametry 0 i 1 prostej tak, by suma kwadratów odchyleń yi od 0 + 1xi była najmniejsza:

№43 слайд
Mamy model liniowy z jedn
Содержание слайда: Mamy model liniowy z jedną zmienną objasniającą Y = α0 + α1 X1 + ξ Wielkości parametrów αi (i= 0,1) w modelu liniowym są niewiadomymi. Po to, by uzyskać wiedzę na temat wielkości parametrów modelu musimy posłużyć się danymi empirycznymi. Parametry αi (i= 0,1) szacujemy na podstawie danych:

№44 слайд
Estymacja Y jest wektorem
Содержание слайда: Estymacja Y jest wektorem zaobserwowanych wartości zmiennej objaśnianej:

№45 слайд
Estymacja X jest macierz
Содержание слайда: Estymacja ● X jest macierzą zaobserwowanych wartości zmiennych objaśniających, przy czym przyjmuje się, że w modelu obok wymienionych zmiennych występuje zmienna x01=1 (przy parametrze α0), a więc:

№46 слайд
Funkcja kryterium
Содержание слайда: Funkcja kryterium (minimalizujemy sumę kwadratów reszt e, przy czym reszty to odchylenia wartości teoretycznych od wartości empirycznych y) w zapisie skalarnym ma postać:

№47 слайд
Estymacja Wektor ocen a
Содержание слайда: Estymacja ● Wektor ocen a parametrów strukturalnych α otrzymujemy obliczając pochodną funkcji ψ względem wektora a i przyrównując ją do zera. ● Wzór na wektor ocen parametrów strukturalnych przybiera ostatecznie postać: ● Podstawiając do wzoru:

№48 слайд
Estymacja otrzymamy wektor
Содержание слайда: Estymacja ● otrzymamy wektor ocen parametrów strukturalnych funkcji liniowej:

Скачать все slide презентации Ekonometria. Estymacja – po co i dlaczego? одним архивом: