Презентация Физиология эндокринной системы и нейроэндокринные отношения. Лекция 11 онлайн

На нашем сайте вы можете скачать и просмотреть онлайн доклад-презентацию на тему Физиология эндокринной системы и нейроэндокринные отношения. Лекция 11 абсолютно бесплатно. Урок-презентация на эту тему содержит всего 26 слайдов. Все материалы созданы в программе PowerPoint и имеют формат ppt или же pptx. Материалы и темы для презентаций взяты из открытых источников и загружены их авторами, за качество и достоверность информации в них администрация сайта не отвечает, все права принадлежат их создателям. Если вы нашли то, что искали, отблагодарите авторов - поделитесь ссылкой в социальных сетях, а наш сайт добавьте в закладки.
Презентации » Здоровье и Медицина » Физиология эндокринной системы и нейроэндокринные отношения. Лекция 11



Оцените!
Оцените презентацию от 1 до 5 баллов!
  • Тип файла:
    ppt / pptx (powerpoint)
  • Всего слайдов:
    26 слайдов
  • Для класса:
    1,2,3,4,5,6,7,8,9,10,11
  • Размер файла:
    519.36 kB
  • Просмотров:
    82
  • Скачиваний:
    0
  • Автор:
    неизвестен



Слайды и текст к этой презентации:

№1 слайд
ЛЕКЦИЯ . ФИЗИОЛОГИЯ
Содержание слайда: ЛЕКЦИЯ 11. ФИЗИОЛОГИЯ ЭНДОКРИННОЙ СИСТЕМЫ И НЕЙРОЭНДОКРИННЫЕ ОТНОШЕНИЯ.

№2 слайд
. . ЭНДОКРИННАЯ СИСТЕМА И
Содержание слайда: 11. 1. ЭНДОКРИННАЯ СИСТЕМА И ГОРМОНЫ. ФУНКЦИОНАЛЬНОЕ ЗНАЧЕНИЕ ГОРМОНОВ. 11. 1. ЭНДОКРИННАЯ СИСТЕМА И ГОРМОНЫ. ФУНКЦИОНАЛЬНОЕ ЗНАЧЕНИЕ ГОРМОНОВ. Эндокринная система и гормоны. Биологическая роль эндокринной системы тесно связана с ролью нервной системы. Эти две системы совместно координируют функцию других, нередко разделенных значительным расстоянием, органов и органных систем. Отличительной чертой эндокринной систе-мы является то, что она осуществляет свое влияние посредством ряда веществ – гормонов. Химически гормоны представляют собой разнородную группу. Их многообразие включает стероиды, производные аминокислот, пептиды и белки. Гормоны вырабатываются: • в специализированных органах – эндокринных железах (железах без выводных протоков), • в компактных группах клеток, например, в островковых клетках поджелудочной железы, интерстициальных клетках Лейдига в семенниках и клеточных группах в слизистой оболочке двенадцатиперстной кишки (секретин), • в гипоталамусе (АДГ, окситоцин и другие.), • в органах, выполняющих не эндокринные функции (в почках – эритропоэтин, в сердце – атриопептид). Их общей особенностью служит то, что они переносятся кровью к более или менее отдаленным органам и оказывают на эти органы-мишени специфическое действие, которое, как правило, не способны воспроизвести другие вещества. Термин «специфическое» указывает также на то, что действие каждого гормона осуществляется только на конкретные функциональные системы или органы – эффекторные органы. Эндокринные железы и клеточные группы заняты исключительно синтезом и секрецией своих гормонов. Наконец, для всех гормонов характерно то, что они оказывают действие только на сложные клеточные структуры (клеточные мембраны, ферментные системы). Таким образом, в отличие от ферментов их действие нельзя продемонстрировать в гомогенатах – оно выявляется только in vivo или в культурах ткани.

№3 слайд
Функциональное значение
Содержание слайда: Функциональное значение гормонов. Гормоны регулируют основные функции организма: Функциональное значение гормонов. Гормоны регулируют основные функции организма: 1) репродукцию (менструальный цикл, овуляция, сперматогенез, беременность лактация); 2) рост и развитие организма (половая дифференцировка, вторичные половые признаки, скорость роста); 3) гомеостаз – сохранение внутренней среды (объем внеклеточной жидкости, кровяное давление, баланс электролитов, регуляция ионного состава плазмы, в частности, уровня кальция, поддержание запасов энергии, например в виде жира); 4) выделение энергии (накопление, распределение и выделение калорий, выработка тепла); 5) поведение (потребление пищи и воды, половое поведение, настроение); 6) адаптацию активности физиологических систем (способность органов и органных систем изменять свою активность в зависимости от потребности в ней). Гормоны как носители информации. Гормоны оказывают действие в очень низких концентрациях, поэтому они не играют роль субстратов в биохимических процессах, которые они контролируют. В некоторых случаях (например, АДГ, адреналин, альдостерон) реакция органов-мишеней более или менее тесно количественно связана с концентрацией гормонов в плазме. Ис-пользуя кибернетическую терминологию, эти гормоны можно назвать носителями информации, что подчеркивает аналогию эндокринной системы с нервной. Различные биохимические реакции могут протекать правильным образом только в присутствии одного или нескольких гормонов, хотя реакция и не ускоряется при увеличении концентрации гормона. В этих случаях говорят, что гормон обладает «пермиссивным» (разрешающим) действием.

№4 слайд
Содержание слайда:

№5 слайд
Содержание слайда:

№6 слайд
Между сигнализацией с помощью
Содержание слайда: Между сигнализацией с помощью гормонов и нейромедиаторов имеет-ся существенное различие. Оно состоит в том, что для связи между разными эндокринными клетками с разными клетками-мишенями используются различные гормоны. В то же время разные нервные клетки могут использовать для связи с разными клетками-мишенями без ущерба для специфичности один и тот же медиатор. Между сигнализацией с помощью гормонов и нейромедиаторов имеет-ся существенное различие. Оно состоит в том, что для связи между разными эндокринными клетками с разными клетками-мишенями используются различные гормоны. В то же время разные нервные клетки могут использовать для связи с разными клетками-мишенями без ущерба для специфичности один и тот же медиатор. Гормоны как элементы регуляторных систем. Рассматривая гормоны как элементы регуляторных систем, их разделяют на две группы. Первая группа включает адреналин, норадреналин, альдостерон, АДГ и некоторые другие. Скорость их секреции и концентрация в плазме претерпевают значительные колебания, приспосабливаясь к меняющейся ситуации. Эти гормоны действуют как контролирующие элементы регуляторной системы Скорость секреции гормона поддерживает регулируемую переменную – концентрацию глюкозы в крови, осмотическое давление крови или какой-либо другой физиологический параметр, который в норме сохраняется на постоянном уровне (в зависимости от конкретного гормона). Слежение за системой осуществляется специфическими рецепторами (рецепторами глюкозы, осморецепторами и т. д.), которые направляют информацию об отклонениях регулируемой переменной от «заданного значения» в форме потенциалов действия в «центральный контроллер» системы. Отклонения от заданного значения могут вызываться различными сдвигами, такими, как изменение скорости окислительных процессов или потребления воды и т. д. Контролер в свою очередь посылает сигнал в нервной или гормональной форме к эндокринной железе, в результате чего ее секреторная активность возрастает или снижает-ся. При особой необходимости может происходить соответствующий сдвиг заданного значения. В другой группе концентрации гормонов в норме поддерживаются на постоянном уровне. Наиболее типичным примером гормонов этой группы является тироксин. Здесь концентрация гормона сама является регулируемой переменной. В этих случаях постоянный уровень концентрации гормона во времени необходим для правильного осуществления различных функций (напри-мер, оказание пермиссивного действия). Однако в особых условиях (напри-мер, при продолжительном пребывании на холоде), скорость секреции и концентрация в плазме даже этих гормонов могут изменяться благодаря сдвигу заданного значения.

№7 слайд
Функциональная классификация
Содержание слайда: Функциональная классификация гормонов. На основании функциональных критериев различают три группы гормонов. Функциональная классификация гормонов. На основании функциональных критериев различают три группы гормонов. 1) Гормоны, которые оказывают влияние непосредственно на орган-мишень; эти гормоны носят название эффекторных. 2) Гормоны, основной функцией которых является регуляция синтеза и выделения эффекторных гормонов; эти гормоны называют тропными, или гландотропными (т.е. оказывающими тропное действие на железы). Примером может служить тиреотропный гормон. 3) Гормоны, выделяемые нервными клетками в гипоталамусе; эти гор-моны регулируют синтез и выделение гормонов (преимущественно тропных) аденогипофиза. Такие гормоны называются рилизинг-гормонами или, если они обладают противоположным действием, ингибирующими гормонами. Именно посредством гормонов, относящихся к этой группе, эндокринная система связана с ЦНС, образуя нейроэндокринную систему регуляции.

№8 слайд
Механизм действия. Согласно
Содержание слайда: Механизм действия. Согласно современным представлениям действие гормонов основано на стимуляции или угнетении каталитической функции некоторых ферментов в клетках органов-мишеней. Этот эффект может достигаться посредством: Механизм действия. Согласно современным представлениям действие гормонов основано на стимуляции или угнетении каталитической функции некоторых ферментов в клетках органов-мишеней. Этот эффект может достигаться посредством: - активации (или ингибирования) уже имеющихся ферментов, причем это влияние опосредуется циклическим аденозинмонофосфатом (цАМР), который выполняет роль «второго посредника» (первым является сам гормон); - увеличения концентрации некоторых ферментов в клетках органов-мишеней («индукция ферментов») за счет увеличения скорости биосинтеза ферментов путем активации генов; изменения проницаемости клеточных мембран, достигаемое также через цАМФ. Однако для многих гормонов до сих пор нет полного и убедительного объяснения механизма действия. Специфичность действия гормонов объясняется на основе существования гормон-специфичных рецепторов клеточных мембран.

№9 слайд
Инактивация. Если гормоны
Содержание слайда: Инактивация. Если гормоны функционируют в качестве элементов регулирующих цепей, то естественно, что они не должны накапливаться в организме. Накоплению препятствуют как химические изменения гормонов в эффекторных органах – инактивация, так и выведение с мочой. Некоторые гормоны инактивируются также и в других органах (особенно в печени). Более того, действие некоторых гормонов может блокироваться благодаря секреции гормонов, обладающих антагонистическим эффектом. Инактивация. Если гормоны функционируют в качестве элементов регулирующих цепей, то естественно, что они не должны накапливаться в организме. Накоплению препятствуют как химические изменения гормонов в эффекторных органах – инактивация, так и выведение с мочой. Некоторые гормоны инактивируются также и в других органах (особенно в печени). Более того, действие некоторых гормонов может блокироваться благодаря секреции гормонов, обладающих антагонистическим эффектом. Каскадный эффект. Для гормонов, вырабатываемых железами в очень небольших количествах, свойственен непропорционально большой количественный эффект. Это объясняется тем, что гормоны действуют через ряд этапов, и на каждом из них действие усиливается. Такой механизм получил название каскадного усиления. Например, такое действие характерно для гормонального контроля превращения глюкозы в гликоген. Во многих случаях происходит саморегуляция уровня гормонов в крови. Она основана на наличии прямых и обратных связей в системе, вырабатывающей гормон.

№10 слайд
. . ОБЩИЕ ПРИНЦИПЫ РЕГУЛЯЦИИ
Содержание слайда: 11.2. ОБЩИЕ ПРИНЦИПЫ РЕГУЛЯЦИИ ФУНКЦИЙ ЭНДОКРИННЫХ ЖЕЛЕЗ. ГИПОТАЛАМО-ГИПОФИЗАРНАЯ СИСТЕМА. ФУНКЦИИ АДЕНОГИПОФИЗА. ФУНКЦИИ НЕЙРОГИПОФИЗА 11.2. ОБЩИЕ ПРИНЦИПЫ РЕГУЛЯЦИИ ФУНКЦИЙ ЭНДОКРИННЫХ ЖЕЛЕЗ. ГИПОТАЛАМО-ГИПОФИЗАРНАЯ СИСТЕМА. ФУНКЦИИ АДЕНОГИПОФИЗА. ФУНКЦИИ НЕЙРОГИПОФИЗА Гипофиз представляет собой эндокринный орган, в котором объединены одновременно три железы, соответствующие его отделам или долям. Функции аденогипофиза. В аденогипофизе синтезируются и секретируются пять основных типов гормонов: кортикотропин, гонадотропины (фоллитропин и лютропин), тиреотропин, пролактин и соматотропин. Первые три из них обеспечивают гипофизарную регуляцию периферических эндокринных желез (коры надпочечников, половых желез и щитовидной железы), т.е. участвуют в реализации гипофизарного пути управления. Для двух других гормонов (соматотропина и пролактина) гипофиз выступает в роли периферической эндокринной железы, поскольку эти гормоны сами действуют на ткани-мишени. Регуляция секреции аденогипофизарных гормонов осуществляется с помощью гипоталамических нейропептидов, приносимых кровью воротной системы гипофиза. Регуляторные нейропептиды называют «либеринами», если они стимулируют синтез и секрецию аденогипофизарных гормонов, или «статинами», если они останавливают гормональную продукцию аденогипофиза. Не для всех гипофизарных гормонов установлены статины, хотя соматостатин может тормозить продукцию не только соматотропина, но и других гормонов.

№11 слайд
Функции нейрогипофиза.
Содержание слайда: Функции нейрогипофиза. Нейрогипофиз не образует, а лишь накапливает и секретирует нейрогормоны супраоптического и паравентрикулярного ядер гипоталамуса – вазопрессин и окситоцин. Функции нейрогипофиза. Нейрогипофиз не образует, а лишь накапливает и секретирует нейрогормоны супраоптического и паравентрикулярного ядер гипоталамуса – вазопрессин и окситоцин. Секреция вазопрессина обеспечивается его синтезом в гипоталамических нейронах и регулируется тремя типами стимулов: - сдвигами осмотического давления и содержания натрия к крови, воспринимаемыми интероцепторами сосудов и сердца (осмонатрио-, волюмо- и механорецепторы), а также непосредственно гипоталамическими нейронами, воспринимающими сдвиг концентрации натрия в крови и микросреде клеток; - активацией гипоталамических ядер при эмоциональном и болевом стрессе, физической нагрузке, - гормонами плаценты и ангиотензином 2, как содержащимся в крови, так и образуемом в мозге. Эффекты вазопрессина реализуются за счет связывания пептида в тканях-мишенях с двумя типами рецепторов – V1 и V2. Стимуляция V1 рецепторов, локализованных в стенке кровеносных сосудов, через вторичные посредники инозитол-3-фосфат и кальций-кальмодулин вызывает сужение сосудов, что соответствует названию «вазопрессин». Этот эффект в физиологических условиях выражен слабо из-за низких концентраций гормона в крови. Связывание с V2 рецепторами в дистальных отделах почечных канальцев через вторичный посредник цАМФ вызывает повышение проницаемости стенки канальцев для воды, ее реабсорбцию и концентрирование мочи, что соответствует второму названию вазопрессина – «антидиуретический гормон». Вазопрессин как нейропептид поступает и в ликвор, и по аксонам экстрагипоталамной системы в другие отделы мозга, что обеспечивает его участие в формировании жажды и питьевого поведения, в нейрохимических механизмах памяти. Недостаток вазопрессина проявляется резко повышенным выделением мочи низкого удельного веса, что называют «несахарным диабетом», а избы-ток гормона ведет к задержке воды в организме.

№12 слайд
. . ФУНКЦИИ КОРЫ
Содержание слайда: 11. 3. ФУНКЦИИ КОРЫ НАДПОЧЕЧНИКОВ. РЕГУЛЯЦИЯ СЕКРЕЦИИ И ФИЗИОЛОГИ-ЧЕСКИЕ ЭФФЕКТЫ МИНЕРАЛОКОРТИКОИДОВ. РЕГУЛЯЦИЯ СЕКРЕЦИИ И ФИЗИОЛОГИЧЕСКИЕ ЭФФЕКТЫ ГЛЮКОКОРТИКОИДОВ. ФУНКЦИИ МОЗГОВОГО ВЕЩЕСТВА НАДПОЧЕЧНИКОВ 11. 3. ФУНКЦИИ КОРЫ НАДПОЧЕЧНИКОВ. РЕГУЛЯЦИЯ СЕКРЕЦИИ И ФИЗИОЛОГИ-ЧЕСКИЕ ЭФФЕКТЫ МИНЕРАЛОКОРТИКОИДОВ. РЕГУЛЯЦИЯ СЕКРЕЦИИ И ФИЗИОЛОГИЧЕСКИЕ ЭФФЕКТЫ ГЛЮКОКОРТИКОИДОВ. ФУНКЦИИ МОЗГОВОГО ВЕЩЕСТВА НАДПОЧЕЧНИКОВ Кора надпочечников, занимающая по объему 80% всей железы, состоит их трех клеточных зон: наружной клубочковой зоны, образующей минералокортикоиды, средней пучковой зоны, образующей глюкокортикоиды, и внутренней сетчатой зоны, в небольшом количестве продуцирующей половые стероиды. Регуляция секреции и физиологические эффекты минералокортикоидов. У человека единственным минералокортикоидом, поступающим в кровь, является альдостерон. Основные физиологические эффекты альдостерона заключаются в поддержании водно-солевого обмена между внешней и внутренней средой организма. Одним из главных органов-мишеней гормона являются почки, где альдостерон вызывает усиленную реабсорбцию натрия в дистальных канальцах, задерживая его в организме и повышая экскрецию ка-лия с мочой. Под влиянием альдостерона происходит задержка в организме хлоридов и воды, усиленное выведение Н+ и аммония, увеличивается объем циркулирующей крови, формируется сдвиг кислотно-щелочного состояния в сторону алкалоза. Действуя на клетки сосудов и тканей, гормон способствует транспорту натрия и воды во внутриклеточное пространство. Минералокортикоиды являются жизненно важными гормонами, однако гибель организма после удаления надпочечников можно предотвратить, вводя гормоны извне. Минералокортикоиды усиливают воспаление и реакции иммунной системы. Избыток их продукция ведет к задержке в организме натрия и воды, отекам и артериальной гипертензии, потере калия и водородных ионов, к нарушениям возбудимости нервной системы и миокарда. Недостаток альдостерона у человека сопровождается уменьшением объема крови, гипотензией, угнетением возбудимости нервной системы.

№13 слайд
Регуляция секреции и
Содержание слайда: Регуляция секреции и физиологические эффекты глюкокортикоидов. Клетки пучковой зоны секретируют в кровь у здорового человека два основных глюкокортикоида: кортизол и кортикостерон, причем кортизола при-мерно в 10 раз больше. Секреция глюкокортикоидов происходит непрерывно с четкой суточной ритмикой, при этом максимальные уровни отмечаются в утренние часы, а минимальные – вечером и ночью. Регуляция секреции и физиологические эффекты глюкокортикоидов. Клетки пучковой зоны секретируют в кровь у здорового человека два основных глюкокортикоида: кортизол и кортикостерон, причем кортизола при-мерно в 10 раз больше. Секреция глюкокортикоидов происходит непрерывно с четкой суточной ритмикой, при этом максимальные уровни отмечаются в утренние часы, а минимальные – вечером и ночью. Глюкокортикоиды прямо или опосредованно регулируют почти все виды обмена веществ и физиологические функции. В общем виде метаболические сдвиги можно свести к распаду белков и липидов в тканях, после чего метаболиты поступают в печень, где из них синтезируется глюкоза, использующаяся как источник энергии. На белковый обмен гормоны оказывают катаболический и антианаболический эффекты, приводя к отрицательному азотистому балансу. Распад белка происходит в мышечной, соединительной и костной тканях, падает уровень альбумина в крови, снижается проницаемость клеточных мембран для аминокислот. Сами гормоны стимулируют катаболизм триглицеридов и подавляют синтез жира из углеводов. Однако из-за гипергликемии и повышения секреции инсулина синтез жира повышается и он откладывается в верхней части туловища, шее и на лице. Гипергликемия под влиянием гормонов возникает за счет усиленного образования глюкозы в печени из аминокислот – глюконеогенеза и подавления утилизации ее тканями. Глюкокортикоиды вызывают снижение в крови количества лимфоцитов, эозинофилов и базофилов, повышение сенсорной чувствительности и возбудимости нервной системы, и, подобно минералокортикоидам, задержку натрия и воды при потере калия. Гормоны участвуют в формировании стресса, повышая устойчивость организма к действию чрезмерных раздражителей, подавляют сосудистую проницаемость и воспаление (поэтому их называют адаптивными и противовоспалительными), из-за катаболизма белка в лимфоидной ткани и угнетения иммунных реакций они оказывают антиаллергические эффекты. Избыток глюкокортикоидов, не связанный с описанной выше усиленной секрецией кортикотропина, получил название синдрома Иценко-Кушинга. Его основные проявления близки болезни Иценко-Кушинга, однако, благодаря об-ратной связи, избыток глюкокортикоидов угнетает секрецию кортикотропина и избыточную пигментацию. Среди проявлений эффектов повышенной секреции гормонов: мышечная слабость, остеопороз, склонность к сахарному диабету, гипертензия, нарушения половых функций, лимфопения, пептические язвы желудка, изменения психики, предрасположенность к инфекциям. Дефицит глюкокортикоидов вызывает гипогликемию, снижение адренореактивности сердечно-сосудистой системы, замедление сердечного ритма, гипотензию, нейтропению, эозинофилию и лимфоцитоз, снижение сопротивляемости организма инфекциям.

№14 слайд
Физиологические эффекты
Содержание слайда: Физиологические эффекты андрогенов надпочечника проявляются в виде стимуляции окостенения эпифизарных хрящей, повышения синтеза бел-ка (анаболический эффект) в коже, мышечной и костной ткани, а также формировании у женщин полового поведения. Гормоны являются предшественниками основного андрогена семенников – тестостерона и могут превращаться в него при метаболизме в тканях. Андрогены надпочечников способствуют раз-витию оволосения по мужскому типу, а их избыток у женщин – к вирилизации, т.е. проявлению мужских черт. Ранний избыток андрогенов ведет к прежде-временному проявлению вторичных половых признаков у мальчиков и вирилизации женских половых органов. Нарушения секреции андрогенов коры надпочечников получили название адреногенитальных синдромов.

№15 слайд
Функции мозгового вещества
Содержание слайда: Функции мозгового вещества надпочечников. Клетки надпочечников синтезируют адреналин. Накапливая секрет в гранулах, после поступления нервного стимула они немедленно выбрасывают гормон в кровь. Секреция катехоламинов в кровь хромаффинными клетками осуществляется с обязательным участием Са2+, кальмодулина и особого белка синексина. Функции мозгового вещества надпочечников. Клетки надпочечников синтезируют адреналин. Накапливая секрет в гранулах, после поступления нервного стимула они немедленно выбрасывают гормон в кровь. Секреция катехоламинов в кровь хромаффинными клетками осуществляется с обязательным участием Са2+, кальмодулина и особого белка синексина. Катехоламины называют гормонами срочного приспособления к дей-ствию сверхпороговых раздражителей среды. Физиологические эффекты катехоламинов, обусловлены различиями в адренорецепторах (альфа и бета) клеточных мембран, при этом адреналин обладает большим сродством к бета-адренорецепторам, а норадреналин – к альфа-адренорецепторам. Основные функциональные эффекты адреналина проявляются в ви-де: учащения и усиления сердечных сокращений, сужения сосудов кожи и органов брюшной полости, повышения теплообразования в тканях, ослабления сокращений желудка и кишечника, расслабления бронхиальной мускулатуры, стимуляции секреции ренина почкой, уменьшения образования мочи, повышения возбудимости нервной системы и эффективности приспособительных реакций. Адреналин вызывает мощные метаболические эффекты в виде усиленного расщепления гликогена в печени и мышцах из-за активации фосфорилазы, а также подавление синтеза гликогена, угнетение потребления глюкозы тканями, что в целом ведет к гипергликемии. Адреналин вызывает активацию распада жира, мобилизацию в кровь жирных кислот и их окисление. Все эти эффекты противоположны действию инсулина, поэтому адреналин называют контринсулярным гормоном. Адреналин усиливает окислительные про-цессы в тканях и повышает потребление ими кислорода. Таким образом, как кортикостероиды, так и катехоламины обеспечивают активацию приспособительных защитных реакций организма и их энергоснабжение, неспецифически повышая устойчивость к неблагоприятным влияниям среды.

№16 слайд
. . ЩИТОВИДНАЯ ЖЕЛЕЗА
Содержание слайда: 11.4. ЩИТОВИДНАЯ ЖЕЛЕЗА: РЕГУЛЯЦИЯ ОБРАЗОВАНИЯ И ТРАНСПОРТ ИОДИРО-ВАННЫХ ГОРМОНОВ, РОЛЬ ИОДИРОВАННЫХ ГОРМОНОВ И КАЛЬЦИТОНИНА. ФУНК-ЦИИ ПАРАЩИТОВИДНЫХ ЖЕЛЕЗ. 11.4. ЩИТОВИДНАЯ ЖЕЛЕЗА: РЕГУЛЯЦИЯ ОБРАЗОВАНИЯ И ТРАНСПОРТ ИОДИРО-ВАННЫХ ГОРМОНОВ, РОЛЬ ИОДИРОВАННЫХ ГОРМОНОВ И КАЛЬЦИТОНИНА. ФУНК-ЦИИ ПАРАЩИТОВИДНЫХ ЖЕЛЕЗ. Регуляция секреции и физиологические эффекты тиреоидных гормонов. Обратные связи в регуляции функции щитовидной железы реализуют-ся уровнем тиреоидных гормонов в крови, что подавляет секрецию тиреолиберина гипоталамусом и тиреотропина гипофизом. Интенсивность секреции тиреоидных гормонов влияет на объем их синтеза в железе (местная положи-тельная обратная связь). Существует и прямая нервная регуляция щитовидной железы со стороны автономной нервной системы, но она играет меньшую роль, чем влияние тиреотропина.. Гормоны щитовидной железы принимают участие в регуляции обмена веществ и физиологических функций в организме. Основными метаболическими эффектами тиреоидных гормонов являются: усиление поглощения кислорода клетками и митохондриями с активацией окислительных процессов и увеличением основного обмена; стимуляция синтеза белка за счет повышения проницаемости мембран клетки для аминокислот и активации генетического аппарата клетки; липолитический эффект и окисление жирных кислот со снижением их уровня в крови; активация синтеза и экскреции холестерина с желчью; гипергликемия за счет активации распада гликогена в печени и повышения всасывания глюкозы в кишечнике; повышение потребления и окисления глюкозы клетками; активация инсулиназы печени и ускорение инактивации инсулина; стимуляция секреции инсулина за счет гипергликемии. Таким образом, тиреоидные гормоны, стимулируя секрецию инсулина и одновременно вызывая контринсулярные эффекты, могут также способство-вать развитию сахарного диабета.

№17 слайд
Основные физиологические
Содержание слайда: Основные физиологические эффекты проявляются в следующем: обеспечении нормальных процессов роста, развития и дифференцировки тканей и органов, особенно, центральной нервной системы, а также процессов физиологической регенерации тканей; активации симпатических эффектов (тахикардия, потливость, сужение сосудов), как за счет повышения чувствительности адреноцепторов, так и в результате подавления ферментов (моно-аминоксидаза), разрушающих норадреналин; повышении эффективности митохондрий и сократимости миокарда; повышении теплообразования и температуры тела; повышении возбудимости центральной нервной системы и активации психических процессов; защитном влиянии по отношению к стрессорным повреждениям миокарда и язвообразованию; увеличении почечного кровотока, клубочковой фильтрации и диуреза при угнетении канальцевой реабсорбции в почках; поддержании нормальной половой жизни и репродуктивной функции. Основные физиологические эффекты проявляются в следующем: обеспечении нормальных процессов роста, развития и дифференцировки тканей и органов, особенно, центральной нервной системы, а также процессов физиологической регенерации тканей; активации симпатических эффектов (тахикардия, потливость, сужение сосудов), как за счет повышения чувствительности адреноцепторов, так и в результате подавления ферментов (моно-аминоксидаза), разрушающих норадреналин; повышении эффективности митохондрий и сократимости миокарда; повышении теплообразования и температуры тела; повышении возбудимости центральной нервной системы и активации психических процессов; защитном влиянии по отношению к стрессорным повреждениям миокарда и язвообразованию; увеличении почечного кровотока, клубочковой фильтрации и диуреза при угнетении канальцевой реабсорбции в почках; поддержании нормальной половой жизни и репродуктивной функции. Избыточная продукция тиреоидных гормонов носит название гипертиреоза. При этом отмечаются характерные метаболические (повышение основного обмена, гипергликемия, гипертермия, похудание) и функциональные про-явления повышенного симпатического тонуса. Врожденная недостаточность тиреоидных гормонов из-за наследственных дефектов или дефицита йода в организме матери нарушает рост, развитие и развитие скелета, тканей и органов, особенно, центральной нервной системы, что ведет к умственной отсталости («кретинизм»). Приобретенная недостаточность щитовидной железы возникает в силу разных причин: дефицита йода в воде и пище, нарушения продукции тиреотропина гипофизом, механического и химического повреждения ткани щитовидной железы. Она проявляется в замедлении окислительных процессов и снижении основного обмена, гипогликемии, падении возбудимости нервной системы и психической деятельности, снижении температуры тела, накоплении гликозаминогликанов и воды в подкожно-жировой клетчатке и коже (гипотиреоз, микседема или слизистый отек).

№18 слайд
Регуляция секреции и
Содержание слайда: Регуляция секреции и физиологические эффекты кальцитонина. Кальцитонин является пептидным гормоном, вырабатываемом в парафолликулярных К-клетках щитовидной железы, он образуется также в тимусе и в легких . Регуляция секреции и физиологические эффекты кальцитонина. Кальцитонин является пептидным гормоном, вырабатываемом в парафолликулярных К-клетках щитовидной железы, он образуется также в тимусе и в легких . Кальцитонин является одним из гормонов, регулирующих кальций и ре-гуляция его секреции осуществляется уровнем ионизированного кальция кро-ви за счет обратных связей. Стимуляция секреции кальцитонина происходит при значительном повышении кальция в крови, а обычные физиологические колебания концентрации кальция мало сказываются на секреции кальцитонина. Мощным регулирующим влиянием на секрецию кальцитонина обладают нейропептиды и пептидные гормоны желудочно-кишечного тракта, особенно, гастрин. Повышение секреции кальцитонина после перорального приема каль-ция обусловлено выделением гастрина. Кальцитонин оказывает свои эффекты после взаимодействия с рецепторами органов мишеней (почка, желудочно-кишечный тракт, костная ткань) через вторичные посредники цАМФ и цГМФ. Гормон снижает уровень кальция в крови за счет облегчения минерализации и подавления потери кальция костной тканью, а также путем снижения реабсорбции кальция в почках.

№19 слайд
Функции паращитовидных желез.
Содержание слайда: Функции паращитовидных желез. В регуляции обмена кальция и фосфатов кроме кальцитонина принимает участие паратгормон, образующийся в паращитовидных (околощитовидных) железах, которые имеются у всех позвоночных, начиная с амфибий. Паращитовидные железы представляют со-бой парные образования, тесно примыкающие к щитовидной железе. Иногда с каждой стороны расположены по две отдельные железы. Паратгормон является небольшим пептидом массой 8500 дальтон. Функции паращитовидных желез. В регуляции обмена кальция и фосфатов кроме кальцитонина принимает участие паратгормон, образующийся в паращитовидных (околощитовидных) железах, которые имеются у всех позвоночных, начиная с амфибий. Паращитовидные железы представляют со-бой парные образования, тесно примыкающие к щитовидной железе. Иногда с каждой стороны расположены по две отдельные железы. Паратгормон является небольшим пептидом массой 8500 дальтон. Паратгормон и кальцийтонин действуют антагонистически. Паратгормон вызывает повышение уровня кальция в плазме. Этот эффект достигается вследствие стимуляции активности остеокластов, благодаря чему катионы кальция и фосфатов освобождаются из кости, при этом происходит усиление реабсорбции кальция в почках. При достаточном уровне витамина D паратгормон также усиливает абсорбцию кальция в кишечнике. Регуляция секреции кальцитонина и паратгормона осуществляется непосредственно уровнем ионизированного кальция. Постоянный уровень кальция особенно важен для нормального функционирования возбудимых структур. Уже небольшое снижение его уровня в крови повышает возбудимость нервно-мышечной системы, сопровождаясь тоническими сокращениями скелетной мускулатуры. Именно поэтому удаление паращитовидных желез, сопровождаясь уменьшением концентрации кальция в плазме, приводит к су-дорогам.

№20 слайд
. . ДЕЯТЕЛЬНОСТЬ ЭНДОКРИННЫХ
Содержание слайда: 11.5. ДЕЯТЕЛЬНОСТЬ ЭНДОКРИННЫХ ТКАНЕЙ В ОРГАНАХ, ОБЛАДАЮЩИХ НЕЭН-ДОКРИННЫМИ ФУНКЦИЯМИ. ЭНДОКРИННЫЕ ФУНКЦИИ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ. ЭНДОКРИННЫЕ ФУНКЦИИ ПОЛОВЫХ ЖЕЛЕЗ. ЭНДОКРИННАЯ ФУНКЦИЯ ПЛАЦЕНТЫ. ЭНДОКРИННЫЕ ФУНКЦИИ ПОЧЕК 11.5. ДЕЯТЕЛЬНОСТЬ ЭНДОКРИННЫХ ТКАНЕЙ В ОРГАНАХ, ОБЛАДАЮЩИХ НЕЭН-ДОКРИННЫМИ ФУНКЦИЯМИ. ЭНДОКРИННЫЕ ФУНКЦИИ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ. ЭНДОКРИННЫЕ ФУНКЦИИ ПОЛОВЫХ ЖЕЛЕЗ. ЭНДОКРИННАЯ ФУНКЦИЯ ПЛАЦЕНТЫ. ЭНДОКРИННЫЕ ФУНКЦИИ ПОЧЕК Эндокринные функции поджелудочной железы. Эндокринную функцию в поджелудочной железе выполняют скопления клеток эпителиального происхождения, получившие название островков Лангерганса и составляющие всего 1–2 % массы поджелудочной железы. Основным регулятором секреции инсулина является D-глюкоза притекающей крови, активирующая в бета-клетках специфическую аденилатциклазу, с помощью которой синтезируется вторичный посредник цАМФ. Через этот посредник глюкоза стимулирует выброс инсулина в кровь из специфических секреторных гранул. Усиливает ответ бета-клеток на действие глюкозы гормон двенадцатиперстной кишки – желудочный ингибиторный пептид (ЖИП). Через неспецифический независимый от глюкозы пул цАМФ стимулируют секрецию инсулина ионы Са2+. В регуляции секреции инсулина определенную роль играет и автономная нервная система. Блуждающий нерв и ацетилхолин стимулируют секрецию инсулина, а симпатические нервы и норадреналин через альфа-адреноцепторы подавляют секрецию инсулина и стимулируют выброс глюкагона. Специфическим ингибитором продукции инсулина является гормон дельта-клеток островков – соматостатин. Этот гормон образуется и в кишечнике, где тормозит всасывание глюкозы и тем самым уменьшает ответную ре-акцию бета-клеток на глюкозный стимул. Образование в поджелудочной желе-зе и кишечнике пептидов, аналогичных мозговым, например, соматостатина, является веским аргументом в пользу взгляда о существовании в организме единой APUD-системы. Секреция глюкагона стимулируется снижением уровня глюкозы в крови, гормонами желудочно-кишечного тракта (ЖИП, гастрин, сек-ретин, холецистокинин-панкреозимин) и при уменьшении в крови ионов Са2+. Подавляют секрецию глюкагона инсулин, соматостатин, глюкоза крови и Са2+. Клетки желудочно-кишечного тракта, продуцирующие гормоны, являются своеобразными датчиками раннего оповещения клеток панкреатических островков о поступлении пищевых веществ в организм, требующих для утилизации и распределения участия панкреатических гормонов.

№21 слайд
Инсулин оказывает влияние на
Содержание слайда: Инсулин оказывает влияние на все виды обмена веществ, он способствует анаболическим процессам, увеличивая синтез гликогена, жиров и бел-ков, тормозя эффекты многочисленных контринсулярных гормонов (глюкагона, катехоламинов, глюкокортикоидов и соматотропина). Все эффекты инсулина по скорости их реализации подразделяются на четыре группы: Инсулин оказывает влияние на все виды обмена веществ, он способствует анаболическим процессам, увеличивая синтез гликогена, жиров и бел-ков, тормозя эффекты многочисленных контринсулярных гормонов (глюкагона, катехоламинов, глюкокортикоидов и соматотропина). Все эффекты инсулина по скорости их реализации подразделяются на четыре группы: - очень быстрые (через несколько секунд) – гиперполяризация мембран клеток за исключением гепатоцитов; повышение проницаемости для глюкозы; активация Nа-К-АТФазы, входа К+ и откачивания Nа+; подавление Са2+-насоса и задержка Са2+; - быстрые эффекты (в течение нескольких минут) – активация и торможение различных ферментов, подавляющих катаболизм и усиливающих анаболические процессы; - медленные процессы (в течение нескольких часов) – повышенное поглощение аминокислот, изменение синтеза РНК и белков-ферментов; - очень медленные эффекты (от часов до суток) – активация митогенеза и размножения клеток. Действие инсулина на углеводный обмен проявляется повышением проницаемости мембран в мышцах и жировой ткани для глюкозы; активацией утилизации глюкозы клетками; усилением процессов фосфорилирования; подавлением распада и стимуляцией синтеза гликогена; угнетением глюконеогенеза; активацией процессов гликолиза; гипогликемией. Действие инсулина на белковый обмен состоит в повышении проницаемости мембран для аминокислот; усилении синтеза иРНК; активации в печени синтеза аминокислот; повышении синтеза и подавлении распада белков.

№22 слайд
Основные эффекты инсулина на
Содержание слайда: Основные эффекты инсулина на липидный обмен: стимуляция синтеза свободных жирных кислот из глюкозы; стимуляция синтеза триглицеридов; подавление распада жира; активация окис¬ления кетоновых тел в печени. Столь широкий спектр метаболических эффектов свидетельствует о том, что инсулин необходим для осуществления функционирова¬ния всех тка-ней, органов и физиологических систем, реализации эмоциональных и пове-денческих актов, поддержания гомеостазиса, осуществления механизмов при-способления и защиты от неблагоприятных факторов среды. Недостаток инсулина (относительный дефицит по сравнению с уровнем контринсулярных гормонов, прежде всего, глюкагона) ведет к сахарному диа-бету. Избыток инсулина вызывает гипогликемию с резкими нарушениями функций центральной нервной системы, использующей глюкозу как основной источник энергии независимо от инсулина. Глюкагон является мощным контринсулярным гормоном и его эффекты реализуются в тканях через систему вторичного посредника цАМФ. В отличие от инсулина, глюкагон повышает уровень сахара в крови, в связи с чем его называют гипергликемическим гормоном. Основные эффекты глюкагона проявляются в следующих сдвигах мета-болизма: активация гликогенолиза в печени и мышцах; активация глюконео-генеза; активация липолиза и подавление синтеза жира; повышение синтеза кетоновых тел в печени и угнетение их окисления; стимуляция катаболизма белков в тканях, прежде всего в печени, и увеличение синтеза мочевины.

№23 слайд
Эндокринные функции половых
Содержание слайда: Эндокринные функции половых желез. Половые железы (семенники и яичники), наряду с функцией гаметообразования, содержат клетки, синтезирующие и секретирующие половые гормоны. При этом эндокринная функция присуща как специализированным для внутренней секреции клеткам (клетки лейдига семенников, клетки желтого тела яичников), так и клеткам, участвующим в процессах гаметогенеза (клетки сертоли семенников, клетки гранулезы яичников). Как семенники, так и яичники, синтезируют и мужские гормоны (андрогены), и женские половые гормоны (эстрогены), являющиеся стероидами – производными холестерина. Эндокринные функции половых желез. Половые железы (семенники и яичники), наряду с функцией гаметообразования, содержат клетки, синтезирующие и секретирующие половые гормоны. При этом эндокринная функция присуща как специализированным для внутренней секреции клеткам (клетки лейдига семенников, клетки желтого тела яичников), так и клеткам, участвующим в процессах гаметогенеза (клетки сертоли семенников, клетки гранулезы яичников). Как семенники, так и яичники, синтезируют и мужские гормоны (андрогены), и женские половые гормоны (эстрогены), являющиеся стероидами – производными холестерина. Эндокринная функция семенников. Основной структурой семенника, где происходит образование и созревание гамет-сперматозоидов, являются извитые семенные канальцы. Основными продуцентами мужских половых гормонов, главным образом, тестостерона являются клетки Лейдига. Регуляция продукции гормонов семенниками осуществляется преимущественно лютропином аденогипофиза, специфически регулирующим секреторную активность клеток Лейдига и продукцию тестостерона, и отчасти фоллитропином, меняющим активность клеток Сертоли и продукцию ими эстрогенов и ингибина. Основные метаболические и функциональные эффекты тестостерона: обеспечение процессов половой дифференцировки в эмбриогенезе; развитие первичных и вторичных половых признаков; формирование структур центральной нервной системы, обеспечивающих половое поведение и функции; генерализованное анаболическое действие, обеспечивающее рост скелета, мускулатуру, распределение подкожного жира; регуляция сперматогенеза; задержка в организме азота, калия, фосфата, кальция; активация синтеза РНК; стимуляция эритропоэза.

№24 слайд
Эндокринная функция яичников.
Содержание слайда: Эндокринная функция яичников. Гормонопродуцирующие клетки гранулезы фолликулов являются по происхождению и функциям аналогом клеток Сертоли семенников, но их функция регулируется не только гипофизарным фоллитропином, но и в большей мере лютропином. Основным гормоном гранулезы является эстрадиол, образуемый. из предшественника тестостерона. В меньшем количестве гранулеэа образует эстрон, из которого в печени и плаценте образуется эстриол. Клетки гранулезы образуют в малых количествах и прогестерон, необходимый для овуляции, но главным источником прогестерона служат клетки желтого тела, регулируемые гипофизарным лютропином. Эндокринная функция яичников. Гормонопродуцирующие клетки гранулезы фолликулов являются по происхождению и функциям аналогом клеток Сертоли семенников, но их функция регулируется не только гипофизарным фоллитропином, но и в большей мере лютропином. Основным гормоном гранулезы является эстрадиол, образуемый. из предшественника тестостерона. В меньшем количестве гранулеэа образует эстрон, из которого в печени и плаценте образуется эстриол. Клетки гранулезы образуют в малых количествах и прогестерон, необходимый для овуляции, но главным источником прогестерона служат клетки желтого тела, регулируемые гипофизарным лютропином. Секреторная активность этих эндокринных клеток характеризуется выраженной цикличностью, связанной с женским половым циклом. Последний обеспечивает интеграцию во времени различных процессов, необходимых для осуществления репродуктивной функции – периодическую подготовку эндо-метрия к имплантации оплодотворенной яйцеклетки, созревание яйцеклетки и овуляцию, изменение вторичных половых признаков. Эстрогены необходимы для процессов половой дифференцировки в эмбриогенезе, полового созревания и развития женских половых признаков, установления женского полового цикла, роста мышцы и железистого эпителия, матки, развития молочных желез. В итоге эстрогены неразрывно связаны с ре-ализацией полового поведения, с овогенезом, процессами оплодотворения и имплантации яйцеклетки, развития и дифференцировки плода, нормального родового акта. Эстрогены задерживают в организме азот, воду и соли, оказывая общее анаболическое действие, хотя и более слабое, чем андрогены. Прогестерон является гормоном сохранения беременности (гестагеном), так как ослабляет готовность мускулатуры матки к сокращению. В малых концентрациях гормон необходим и для овуляции. Большие количества прогестерона, образующиеся желтым телом, подавляют секрецию гипофизарных гонадотропинов. Прогестерон обладает выраженным антиальдостероновым эффектом, поэтому стимулирует натрийурез.

№25 слайд
Эндокринная функция плаценты.
Содержание слайда: Эндокринная функция плаценты. Плацента настолько тесно связана с организмами матери и плода, что принято говорить о комплексе «мать-плацента-плод» или «фетоплацентарном комплексе». Так, синтез в плаценте эстриола происходит не только из эстрадиола матери, но и из дегидроэпиандростерона, образуемого надпочечниками плода. По экскреции эстриола с мочой матери можно даже судить о жизнеспособности плода. В плаценте образуется прогестерон, эффект которого преимущественно местный. С плацентарным прогестероном связан временной интервал между рождениями плодов при двойне. Эндокринная функция плаценты. Плацента настолько тесно связана с организмами матери и плода, что принято говорить о комплексе «мать-плацента-плод» или «фетоплацентарном комплексе». Так, синтез в плаценте эстриола происходит не только из эстрадиола матери, но и из дегидроэпиандростерона, образуемого надпочечниками плода. По экскреции эстриола с мочой матери можно даже судить о жизнеспособности плода. В плаценте образуется прогестерон, эффект которого преимущественно местный. С плацентарным прогестероном связан временной интервал между рождениями плодов при двойне. Основная часть гормонов плаценты у человека по своим свойствам и даже строению напоминает гипофизарные гонадотропин и пролактин. В наибольших количествах при беременности плацентой продуцируется хорионический гонадотропин, оказывающий эффекты не только на процессы дифференцировки и развития плода, но и на метаболизм в организме матери. Гормон обеспечивает в организме матери задержку солей и воды, стимулирует секрецию вазопрессина, активирует механизмы иммунитета.

№26 слайд
Эндокринная функция тимуса.
Содержание слайда: Эндокринная функция тимуса. Тимус (вилочковая железа) является центральным органом иммунитета, обеспечивающим продукцию специфических Т-лимфоцитов. Наряду с этим, тимоциты секретируют в кровь гормональные факторы, оказывающие не только эффекты на дифференцировку Т-клеток с обеспечением иммунокомпетентности (тимозин, тимопоэтин), но и ряд общих регуляторных эффектов. Эти эффекты распространяются на процессы синтеза клеточных рецепторов к медиаторам и гормонам, на стимуляцию разрушения ацетилхолина в нервномышечных синапсах, состояние углеводного и белкового обмена, а также обмена кальция, функции щитовидной и половых желез, эффекты глюкокортикоидов, тироксина (антагонизм) и соматотропина (синергизм). В целом вилочковая железа рассматривается как орган интеграции иммунной и эндокринной систем организма. Эндокринная функция тимуса. Тимус (вилочковая железа) является центральным органом иммунитета, обеспечивающим продукцию специфических Т-лимфоцитов. Наряду с этим, тимоциты секретируют в кровь гормональные факторы, оказывающие не только эффекты на дифференцировку Т-клеток с обеспечением иммунокомпетентности (тимозин, тимопоэтин), но и ряд общих регуляторных эффектов. Эти эффекты распространяются на процессы синтеза клеточных рецепторов к медиаторам и гормонам, на стимуляцию разрушения ацетилхолина в нервномышечных синапсах, состояние углеводного и белкового обмена, а также обмена кальция, функции щитовидной и половых желез, эффекты глюкокортикоидов, тироксина (антагонизм) и соматотропина (синергизм). В целом вилочковая железа рассматривается как орган интеграции иммунной и эндокринной систем организма. Эндокринные функции почек. В почках отсутствует специализированная эндокринная ткань, однако ряд клеток обладает способностью к синтезу и секреции биологически активных веществ, обладающих всеми свойствами типичных гормонов. Гормонами почек являются: 1) кальцитриол – третий кальций-регулирующий гормон, 2) ренин – начальное звено ренин-ангиотензин-альдостероновой систе-мы, 3) эритропоэтин – гормон регулирующий эритропоэз и синтез гемоглобина.

Скачать все slide презентации Физиология эндокринной системы и нейроэндокринные отношения. Лекция 11 одним архивом: