Презентация По физике. Тема: Интерференция света . Класс: 9 «б» онлайн

На нашем сайте вы можете скачать и просмотреть онлайн доклад-презентацию на тему По физике. Тема: Интерференция света . Класс: 9 «б» абсолютно бесплатно. Урок-презентация на эту тему содержит всего 8 слайдов. Все материалы созданы в программе PowerPoint и имеют формат ppt или же pptx. Материалы и темы для презентаций взяты из открытых источников и загружены их авторами, за качество и достоверность информации в них администрация сайта не отвечает, все права принадлежат их создателям. Если вы нашли то, что искали, отблагодарите авторов - поделитесь ссылкой в социальных сетях, а наш сайт добавьте в закладки.
Презентации » Физика » По физике. Тема: Интерференция света . Класс: 9 «б»



Оцените!
Оцените презентацию от 1 до 5 баллов!
  • Тип файла:
    ppt / pptx (powerpoint)
  • Всего слайдов:
    8 слайдов
  • Для класса:
    1,2,3,4,5,6,7,8,9,10,11
  • Размер файла:
    531.00 kB
  • Просмотров:
    110
  • Скачиваний:
    1
  • Автор:
    неизвестен



Слайды и текст к этой презентации:

№1 слайд
Презентация по физике. Тема
Содержание слайда: Презентация по физике. Тема: Интерференция света . Класс: 9 «б»

№2 слайд
Интерференция света
Содержание слайда: Интерференция света Интерференция света – нелинейное сложение интенсивностей двух или нескольких световых волн. Это явление сопровождается чередующимися в пространстве максимумами и минимумами интенсивности. Ее распределение называется интерференционной картиной. Впервые явление интерференции было независимо обнаружено Робертом Бойлем (1627— 1691 гг.) и Робертом Гуком (1635—1703 гг.). Они наблюдали возникновение разноцветной окраски тонких пленок (интерференционных полос), подобных масляным или бензиновым пятнам на поверхности воды. В 1801 году Томас Юнг (1773—1829 гг.), введя «Принцип суперпозиции», первым объяснил явление интерференции света, ввел термин “интерференция” (1803) и объяснил «цветастость» тонких пленок. Он так же выполнил первый демонстрационный эксперимент по наблюдению интерференции света, получив интерференцию от двух щелевых источников света (1802); позднее этот опыт Юнга стал классическим.

№3 слайд
Интерференция двух плоских
Содержание слайда: Интерференция двух плоских волн Пусть имеются две плоские волны:   и   По принципу суперпозиции результирующее поле в области пересечения этих волн будет определяться суммой: Интенсивность задается соотношением: Откуда с учетом:  : Для простоты рассмотрим одномерный случай   и сонаправленность поляризаций волн, тогда выражение для интенсивности можно переписать в более простом виде: Интерференционная картина представляет собой чередование светлых и темных полос, шаг которых равен: Примером этого случая является интерференционная картина в отраженном от поверхностей плоско-параллельной пластинки свете.

№4 слайд
Случай неравных частот В
Содержание слайда: Случай неравных частот В некоторых учебниках и пособиях говорится о том, что интерференция света возможна только для волн образованных от одного источника света путем амплитудного либо полевого деления волновых фронтов. Это утверждение является не верным. С точки зрения принципа суперпозиции интерференция существует всегда, даже когда интерферируют волны от двух разных источников света. Правильно было бы говорить о наблюдении или возможности наблюдения интерференционной картины. Последняя может быть нестационарна во времени, что приводит к замазыванию и исчезновению интерференционных полос. Рассмотрим две плоские волны с разными частотами:   и   По принципу суперпозиции результирующее поле в области пересечения этих волн будет определяться суммой: Пусть некоторый прибор, обладающий некоторым характерным временем регистрации (экспозиции), фотографирует интерференционную картину. В физической оптике интенсивностью называют усредненный по времени поток световой энергии через единичную площадку ортогональную направлению распространения волны. Время усреднения определяется временем интегрирования фотоприемника, а для устройств, работающих в режиме накопления сигнала (фотокамеры, фотопленка и т. п.), временем экспозиции. Поэтому приемники излучения оптического диапазона реагируют на среднее значение потока энергии. Т. е. сигнал с фотоприемника пропорционален: где под <> подразумевается усреднение. Во многих научно технических приложениях данное понятие обобщается на любые, в том числе и не плоские волны. Так как в большенстве случаев, например в задачах связанных с интерференцией и дифракцией света, исследуется в основном пространственное положение максимумов и минимумов и их относительная интенсивность, постоянные множители, не зависящие от пространственных координат, часто не учитываются. По этой причине часто полагают: Квадрат модуля амплитуды задается соотношением: Откуда, подставляя напряженность электрического поля, получим: ,   где ,   ,   С учетом определения интенсивности можно перейти к следующиму выражению: *,   где   - интенсивности волн Взятие интеграла по времени и применение формулы разности синусов дает следующие выражения для распределения интенсивности: В итоговом соотношении слагаемое, содержащее тригонометрические множители, называется интерференционным членом. Оно отвечает за модуляцию интенсивности интерференционными полосами. Степень различимости полос на фоне средней интенсивности называется видностью или контрастом интерференционных полос:

№5 слайд
Условия наблюдения
Содержание слайда: Условия наблюдения интерференции Условия наблюдения интерференции Рассмотрим несколько характерных случаев: 1. Ортогональность поляризаций волн. При этом  и  . Интерференционные полосы отсутствуют, а контраст равен 0. Далее, без потери общности, можно положить, что поляризации волн одинаковы. 2. В случае равенства частот волн и контраст полос не зависит от времени экспозиции . 3. В случае   значение функции    и интерференционная картина не наблюдается. Контраст полос, как и в случае ортогональных поляризаций, равен 0 4. В случае   контраст полос существенным образом зависит от разности частот и времени экспозиции.

№6 слайд
Содержание слайда:

№7 слайд
Общий случай интерференции
Содержание слайда: Общий случай интерференции При взятии интеграла в соотношении ↑  полагалось, что разность фаз не зависит от времени. Реальные же источники света излучают с постоянной фазой лишь в течение некоторого характерного времени, называемого временем когерентности. По этой причине, при рассмотрении вопросов интерференции оперируют понятием когерентности волн. Волны называют когерентными, если разность фаз этих волн не зависит от времени. В общем случае говорят, что волны частично когерентны. При этом поскольку существует некоторая зависимость от времени, интерференционная картина изменяется во времени, что приводит к ухудшению контраста либо к исчезновению полос вовсе. При этом в рассмотрении задачи интерференции, вообще говоря и не монохроматическгого (полихроматического) излучения, вводят понятие комплексной степени когерентности . Интерференционное соотношение принимает вид Оно называется общим законом интерференции стационарных оптических полей.

№8 слайд
КОНЕЦ
Содержание слайда: КОНЕЦ

Скачать все slide презентации По физике. Тема: Интерференция света . Класс: 9 «б» одним архивом:
Похожие презентации