Презентация СВОЙСТВА ДЕФЕКТОВ И ИХ АНСАМБЛЕЙ В КОНДЕНСИРОВАННЫХ СРЕДАХ Радиационная физика твердого тела онлайн

На нашем сайте вы можете скачать и просмотреть онлайн доклад-презентацию на тему СВОЙСТВА ДЕФЕКТОВ И ИХ АНСАМБЛЕЙ В КОНДЕНСИРОВАННЫХ СРЕДАХ Радиационная физика твердого тела абсолютно бесплатно. Урок-презентация на эту тему содержит всего 34 слайда. Все материалы созданы в программе PowerPoint и имеют формат ppt или же pptx. Материалы и темы для презентаций взяты из открытых источников и загружены их авторами, за качество и достоверность информации в них администрация сайта не отвечает, все права принадлежат их создателям. Если вы нашли то, что искали, отблагодарите авторов - поделитесь ссылкой в социальных сетях, а наш сайт добавьте в закладки.
Презентации » Физика » СВОЙСТВА ДЕФЕКТОВ И ИХ АНСАМБЛЕЙ В КОНДЕНСИРОВАННЫХ СРЕДАХ Радиационная физика твердого тела



Оцените!
Оцените презентацию от 1 до 5 баллов!
  • Тип файла:
    ppt / pptx (powerpoint)
  • Всего слайдов:
    34 слайда
  • Для класса:
    1,2,3,4,5,6,7,8,9,10,11
  • Размер файла:
    5.25 MB
  • Просмотров:
    93
  • Скачиваний:
    1
  • Автор:
    неизвестен



Слайды и текст к этой презентации:

№1 слайд
СВОЙСТВА ДЕФЕКТОВ И ИХ
Содержание слайда: СВОЙСТВА ДЕФЕКТОВ И ИХ АНСАМБЛЕЙ В КОНДЕНСИРОВАННЫХ СРЕДАХ Радиационная физика твердого тела

№2 слайд
Содержание
Содержание слайда: Содержание

№3 слайд
Содержание
Содержание слайда: Содержание

№4 слайд
Содержание
Содержание слайда: Содержание

№5 слайд
Содержание
Содержание слайда: Содержание

№6 слайд
Введение
Содержание слайда: Введение

№7 слайд
Ряд проблемных задач физики
Содержание слайда: Ряд проблемных задач физики конденсированных систем имеет фундаментальный характер

№8 слайд
ВИДЫ ОТДЕЛЬНЫХ ЭЛЕМЕНТАРНЫХ
Содержание слайда: ВИДЫ ОТДЕЛЬНЫХ ЭЛЕМЕНТАРНЫХ ДЕФЕКТОВ И ИХ СВОЙСТВА. ДЕФЕКТЫ В ПРОСТЫХ ВЕЩЕСТВАХ.

№9 слайд
Классификация дефектов
Содержание слайда: Классификация дефектов простых веществ. Определение: Любые нарушения или искажения в регулярности расположения атомов кристалла считают дефектом кристаллической решетки. Различают следующие виды отдельных дефектов: Тепловое движение атомов Междоузельные атомы и вакансии Примесные атомы Граница кристалла Поликристаллы Дислокации Статические смещения решетки вблизи дефекта

№10 слайд
.Тепловое движение атомов
Содержание слайда: 1.Тепловое движение атомов

№11 слайд
.Междоузельные атомы и
Содержание слайда: 2.Междоузельные атомы и вакансии.

№12 слайд
. Атомы примесей
Содержание слайда: 3. Атомы примесей

№13 слайд
. Граница кристалла
Содержание слайда: 4. Граница кристалла

№14 слайд
. Дислокации неравновесный
Содержание слайда: 5. Дислокации – неравновесный тип дефекта, т.е. их появление обусловлено предысторией образца и связано либо ростом кристаллита, либо действием внешних нагрузок или воздействий. Различают несколько типов дислокаций: краевые, винтовые, смешанные. Их скопления часто формируют межзеренные границы.

№15 слайд
В зависимости от размерности
Содержание слайда: В зависимости от размерности различают следующие типы дефектов: В зависимости от размерности различают следующие типы дефектов: 1. Точечные дефекты: Междоузельные атомы и вакансии, Примесные атомы 2. Линейные дефекты :Дислокации 3. Плоские дефекты: Граница кристалла, Поликристаллы Феноменологические характеристики точечных дефектов: - энергия образования; - энергия миграции; - дилатационный объём.

№16 слайд
Междоузлие В идеальной
Содержание слайда: Междоузлие В идеальной структуре какого-либо типа, атом занимает положение, соответствующее узлу решетки. Лишний атом, для которого нет соответствующего узла, занимает междоузельное положение. Таких положений может быть для структуры несколько. Различные виды междоузельных атомов углерода в решетке алмаза: а – Тетраэдрическое – T; б – Гексагональное –H; в – междоузлие посредине связи – M; г – Расщепленное междоузлие (гантель - <100>).

№17 слайд
Собственное междоузлие в
Содержание слайда: Собственное междоузлие в алмазе Лишний атом, для которого нет соответствующего узла, занимает междоузельное положение и возмущает распределение электронной плотности внутри элементарной ячейки

№18 слайд
Вакансии в ковалентных
Содержание слайда: Вакансии в ковалентных соединениях Отсутствие атома в узле решетки создает точечный дефект типа вакансии: Конфигурация вакансии и дивакансии в алмазе Картина смещений отличается от смещений для междоузельных атомов направлением, обычно ближайшее окружение смещается к пустому узлу. В соединениях ионного типа вакансии образуются парами, что является энергетически более выгодной конфигурацией для данной структуры (дефект Шоттки). Сказывается необходимость соблюдения нейтральности. Такой тип дефектов проявляются тем выгоднее, чем выше ионность связи, например в NaCl. Отметим также, что в ВТСП типа YBa2Cu3O7 связь наблюдается частично ионной связи.

№19 слайд
Одиночная вакансия в алмазе
Содержание слайда: Одиночная вакансия в алмазе Атома нет в соответствующем узле, что приводит к возмущению распределение электронной плотности внутри элементарной ячейки

№20 слайд
Содержание слайда:

№21 слайд
Модель образования вакансии в
Содержание слайда: Модель образования вакансии в простых веществах Можно предложить следующий механизм образования вакансии. Атом выносится на границу кристалла, при этом число частиц в системе не изменяется. Действительно, простое удаление атома из узла решетки кристалла на бесконечность изменяет число частиц в системе и для расчета термодинамического потенциала системы потребуется учитывать этот факт. В окрестности образовавшейся вакансии будет происходить релаксация атомов (красные стрелки на рисунке). Будем считать, что два атома вещества взаимодействуют друг с другом посредством парного потенциала взаимодействия, который не зависит от окружения атомов.

№22 слайд
Расчет энергии формирования
Содержание слайда: Расчет энергии формирования вакансии Энергия атома, находящегося в узле кристалла, равна Eузл=z1*φ(R*), где число ближайших соседей порядка z1  6 - 8, R*– равновесное межатомное расстояние, оценка потенциала φ(R*) может быть сделана, например, из энергии сублимации вещества, что дает φ(R*) ≈ 0.2 ÷ 0.3eV. Таким образом, величина энергии атома в узле решетки равна Eузл~ 1.6 ÷ 2.4 эВ. Такая энергия должна быть затрачена на разрыв связей при образовании вакансии. Однако вынутый атом размещается на поверхности, следовательно, можно считать, что половина разорванных связей восстанавливается. Энергия атома, находящегося на поверхности равна. Таким образом, величина энергия формирования вакансии Ef ≈ 0.8 ÷ 1.2 эВ. Миграция ваканисии Рассмотрим миграцию вакансий. Чтобы атом А перепрыгнул на пустой узел, в котором расположена вакансия, казалось бы ему не нужно преодолевать барьер, но это не так – надо разорвать связи.

№23 слайд
Кроме того, вдоль траектории
Содержание слайда: Кроме того, вдоль траектории миграции вакансии (или атома А) возникает энергетический барьер (энергетическая линза), создаваемый ближайшими атомами. Это наиболее наглядно видно в трехмерном кристалле Число ближайших соседей в сечении ABCD обычно меньше, чем у узле, z2 = 4. Если предположить, что парный потенциал меняется слабо, то величину энергетического барьера для миграции вакансии можно оценить Emγ ≈ 0.8 ÷ 1 эВ.

№24 слайд
Дилатационный объем вакансии
Содержание слайда: Дилатационный объем вакансии Пусть ω0 – объем, приходящийся на один атом твердого тела. При образовании вакансии поверхность за счет релаксации исказится, и объем кристалла V изменится. Оценки дают примерно δV(1)= - 0.1ω0, это результат был получен на основании результатов дилатационных экспериментов, связанных с введением в образец множества вакансий. Отметим, что в матрице окружающей область образования вакансии происходит некоторое увеличение плотности вещества за счет релаксации. В рассмотренном выше механизме образовании вакансии атом выходит на поверхность. Связанное с этим дополнительное изменение объема составляет δV(2)=+ω0. Таким образом, суммарное изменение объема кристалла равно: δV=δV(1) + δV(2) =+0.9ω0

№25 слайд
Междоузлия в простых
Содержание слайда:   Междоузлия в простых веществах и их характеристики Рассмотрим следующий механизм формирования междоузельного атома. Пусть при формировании междоузлия атом вносится в кристалл с поверхности. Оценка энергии дает величину zi∙φ(R), где zi - число ближайших соседей, R – расстояние минимального сближения междоузельного атома с ближайшими соседями. При этом, R < R* - равновесного расстояния в решетке, т.е. потенциальная энергия парного взаимодействия больше. Положение равновесия междоузельного атома определяется равновесием сил всех взаимодействующих пар. Число соседей определяется типом междоузлий. Как показывает эксперимент, обычно для наиболее представительного типа междоузлий энергия образования составляет величину Efi~ 3 ÷ 5 эВ и больше, чем для вакансий . В отличие от вакансии у междоузельного атома могут быть разные стационарные положения в одной решетке с разными энергиями образования -это означает, что в равновесии заселенность этих состояний будет различной. Если , то при низких температурах – заселены междоузлия типа 1. При повышении температуры – заселяются и места 2. В радиационных процессах междоузельные дефекты второго типа могут рождаться и при низких температурах.

№26 слайд
Пример разных типов
Содержание слайда: Пример разных типов междоузлий для структуры -железа: Пример разных типов междоузлий для структуры -железа: А - I1- гантель <100>; б – I2 –гантель - <110>; в – I3 – краудион; г – I4 – смещенный краудион; д – I5 - октаэдрический междоузельный атом; е – I6 – тетраэдрический междоузельный атом.

№27 слайд
Величина энергия миграции
Содержание слайда: Величина энергия миграции междоузлия оценивается как EmI ~ 0.1 эВ, т.е. EmI << EmV - энергии миграции вакансий. Этот факт обусловлен тем, что, как следует из численных расчетов характерное расстояние равновесия до ближайших соседей для междоузельного атома порядка тех расстояний, на которых междоузельный атом преодолевает энергетический барьер при прохождении линзы. Величина энергия миграции междоузлия оценивается как EmI ~ 0.1 эВ, т.е. EmI << EmV - энергии миграции вакансий. Этот факт обусловлен тем, что, как следует из численных расчетов характерное расстояние равновесия до ближайших соседей для междоузельного атома порядка тех расстояний, на которых междоузельный атом преодолевает энергетический барьер при прохождении линзы. Число же ближайших соседей zI  zL,т.е. высота барьера для миграции междоузельного атома должна быть мала. Рассмотрим вопрос о дилатационном объеме междоузлия. Как показывают дилатационные эксперименты при образовании междоузельного дефекта происходит увеличение объема кристалла. Величина изменения объема, приходящаяся на один междоузельный атом δV(1)=+0.1ω0. При образовании междоузлия твердое тело немного «распухает». Как и в случае с вакансией, при образовании междоузельного атома в матрице и соответственно его исчезновением на поверхности, дополнительное изменение объема образца составляет δV(2)= - ω0. Таким образом, суммарное изменение объема кристалла равно δV=δV(1) + δV(2) = - 0.9ω0

№28 слайд
Содержание слайда:

№29 слайд
Дефект Френкеля
Содержание слайда: Дефект Френкеля

№30 слайд
Содержание слайда:

№31 слайд
Содержание слайда:

№32 слайд
Дивакансия, Дефект Шотки
Содержание слайда: Дивакансия, Дефект Шотки

№33 слайд
Содержание слайда:

№34 слайд
ДЕФЕКТЫ УПАКОВКИ В
Содержание слайда: ДЕФЕКТЫ УПАКОВКИ В кристаллических решетках металлов, имеющих координационное число 12, т.е. наиболее плотноупакованных (гранецентрированная кубическая (ГЦК) и плотноупакованная гексагональная структура (ГПУ)), встречаются еще особого вида дефекты кристаллического строения называемые ошибками наложения (упаковки). Расположение атомов в плотноупакованных кристаллических решетках. Светлые кружки- положения типа 1; Черные кружки – положения типа 2; Звездочки – положения типа- 3. Справа - правильное чередование слоев 1-2-1-2 (ГПУ), 123-123-123 правильное чередование слоев, приводящее к ГЦК слева – нарушение чередования 1-2-3-2-1. Вид сбоку. Приводит к двойникованию кристалла

Скачать все slide презентации СВОЙСТВА ДЕФЕКТОВ И ИХ АНСАМБЛЕЙ В КОНДЕНСИРОВАННЫХ СРЕДАХ Радиационная физика твердого тела одним архивом:
Похожие презентации