Презентация Work, energy and power. Conservation of energy. Linear momentum. Collisions онлайн

На нашем сайте вы можете скачать и просмотреть онлайн доклад-презентацию на тему Work, energy and power. Conservation of energy. Linear momentum. Collisions абсолютно бесплатно. Урок-презентация на эту тему содержит всего 34 слайда. Все материалы созданы в программе PowerPoint и имеют формат ppt или же pptx. Материалы и темы для презентаций взяты из открытых источников и загружены их авторами, за качество и достоверность информации в них администрация сайта не отвечает, все права принадлежат их создателям. Если вы нашли то, что искали, отблагодарите авторов - поделитесь ссылкой в социальных сетях, а наш сайт добавьте в закладки.
Презентации » Физика » Work, energy and power. Conservation of energy. Linear momentum. Collisions



Оцените!
Оцените презентацию от 1 до 5 баллов!
  • Тип файла:
    ppt / pptx (powerpoint)
  • Всего слайдов:
    34 слайда
  • Для класса:
    1,2,3,4,5,6,7,8,9,10,11
  • Размер файла:
    1.02 MB
  • Просмотров:
    90
  • Скачиваний:
    2
  • Автор:
    неизвестен



Слайды и текст к этой презентации:

№1 слайд
Physics Voronkov Vladimir
Содержание слайда: Physics 1 Voronkov Vladimir Vasilyevich

№2 слайд
Lecture Work, energy and
Содержание слайда: Lecture 3 Work, energy and power Conservation of energy Linear momentum. Collisions.

№3 слайд
Work A force acting on an
Содержание слайда: Work A force acting on an object can do work on the object when the object moves.

№4 слайд
Содержание слайда:

№5 слайд
Work Units Work is a scalar
Содержание слайда: Work Units Work is a scalar quantity, and its units are force multiplied by length. Therefore, the SI unit of work is the newton • meter (N • m). This combination of units is used so frequently that it has been given a name of its own: the joule ( J).

№6 слайд
Work done by a varying force
Содержание слайда: Work done by a varying force

№7 слайд
Содержание слайда:

№8 слайд
Work done by a spring If the
Содержание слайда: Work done by a spring If the spring is either stretched or compressed a small distance from its unstretched (equilibrium) configuration, it exerts on the block a force that can be expressed as

№9 слайд
Содержание слайда:

№10 слайд
Содержание слайда:

№11 слайд
Work of a spring So the work
Содержание слайда: Work of a spring So the work done by a spring from one arbitrary position to another is:

№12 слайд
Kinetic energy Work is a
Содержание слайда: Kinetic energy Work is a mechanism for transferring energy into a system. One of the possible outcomes of doing work on a system is that the system changes its speed. Let’s take a body and a force acting upon it: Using Newton’s second law, we can substitute for the magnitude of the net force and then perform the following chain-rule manipulations on the integrand:

№13 слайд
And finally This equation was
Содержание слайда: And finally: This equation was generated for the specific situation of one-dimensional motion, but it is a general result. It tells us that the work done by the net force on a particle of mass m is equal to the difference between the initial and final values of a quantity

№14 слайд
Work-energy theorem In the
Содержание слайда: Work-energy theorem: In the case in which work is done on a system and the only change in the system is in its speed, the work done by the net force equals the change in kinetic energy of the system. This theorem is valid only for the case when there is no friction.

№15 слайд
Conservative and
Содержание слайда: Conservative and Nonconcervative Forces Forces for which the work is independent of the path are called conservative forces. Forces for which the work depends on the path are called nonconservative forces The work done by a conservative force in moving an object along any closed path is zero.

№16 слайд
Examples Conservative Forces
Содержание слайда: Examples Conservative Forces: Spring central forces Gravity Electrostatic forces Nonconcervative Forces: Various kinds of Friction

№17 слайд
Gravity is a conservative
Содержание слайда: Gravity is a conservative force: Gravity is a conservative force:

№18 слайд
Friction is a nonconcervative
Содержание слайда: Friction is a nonconcervative force:

№19 слайд
Power Power P is the rate at
Содержание слайда: Power Power P is the rate at which work is done:

№20 слайд
Potential Energy Potential
Содержание слайда: Potential Energy Potential energy is the energy possessed by a system by virtue of position or condition. We call the particular function U for any given conservative force the potential energy for that force. Remember the minus in the formula above.

№21 слайд
Содержание слайда:

№22 слайд
Potential Energy of Gravity
Содержание слайда: Potential Energy of Gravity

№23 слайд
Conservation of mechanical
Содержание слайда: Conservation of mechanical energy E = K + U(x) = ½ mv2 + U(x) is called total mechanical energy If a system is isolated (no energy transfer across its boundaries) having no nonconservative forces within then the mechanical energy of such a system is constant.

№24 слайд
Linear momentum Let s
Содержание слайда: Linear momentum Let’s consider two interacting particles: and their accelerations are: using definition of acceleration: masses are constant:

№25 слайд
So the total sum of
Содержание слайда: So the total sum of quantities mv for an isolated system is conserved – independent of time. This quantity is called linear momentum.

№26 слайд
General form for Newton s
Содержание слайда: General form for Newton’s second law: It means that the time rate of change of the linear momentum of a particle is equal to the net for force acting on the particle. The kinetic energy of an object can also be expressed in terms of the momentum:

№27 слайд
The law of linear momentum
Содержание слайда: The law of linear momentum conservation The sum of the linear momenta of an isolated system of objects is a constant, no matter what forces act between the objects making up the system.

№28 слайд
Impulse-momentum theorem The
Содержание слайда: Impulse-momentum theorem The impulse of the force F acting on a particle equals the change in the momentum of the particle. Quantity is called the impulse of the force F.

№29 слайд
Collisions Let s study the
Содержание слайда: Collisions Let’s study the following types of collisions: Perfectly elastic collisions: no mass transfer from one object to another Kinetic energy conserves (all the kinetic energy before collision goes to the kinetic energy after collision) Perfectly inelastic collisions: two objects merge into one. Maximum kinetic loss.

№30 слайд
Perfectly elastic collisions
Содержание слайда: Perfectly elastic collisions We can write momentum and energy conservation equations: (1) (2) (1)=> (3) (2)=> (4) (4)/(3): (5)

№31 слайд
Denoting We can obtain from
Содержание слайда: Denoting We can obtain from (5) Here Ui and Uf are initial and final relative velocities. So the last equation says that when the collision is elastic, the relative velocity of the colliding objects changes sign but does not change magnitude.

№32 слайд
Perfectly inelastic collisions
Содержание слайда: Perfectly inelastic collisions

№33 слайд
Energy loss in perfectly
Содержание слайда: Energy loss in perfectly inelastic collisions

№34 слайд
Units in SI Work,EnergyW,EJ N
Содержание слайда: Units in SI Work,Energy W,E J=N*m=kg*m2/s2 Power P J/s=kg*m2/s3 Linear momentum p kg*m/s

Скачать все slide презентации Work, energy and power. Conservation of energy. Linear momentum. Collisions одним архивом: