Презентация Вводная часть (классификация строительных материалов и их свойств, основные свойства строительных материалов) онлайн

На нашем сайте вы можете скачать и просмотреть онлайн доклад-презентацию на тему Вводная часть (классификация строительных материалов и их свойств, основные свойства строительных материалов) абсолютно бесплатно. Урок-презентация на эту тему содержит всего 71 слайд. Все материалы созданы в программе PowerPoint и имеют формат ppt или же pptx. Материалы и темы для презентаций взяты из открытых источников и загружены их авторами, за качество и достоверность информации в них администрация сайта не отвечает, все права принадлежат их создателям. Если вы нашли то, что искали, отблагодарите авторов - поделитесь ссылкой в социальных сетях, а наш сайт добавьте в закладки.
Презентации » Технология » Вводная часть (классификация строительных материалов и их свойств, основные свойства строительных материалов)



Оцените!
Оцените презентацию от 1 до 5 баллов!
  • Тип файла:
    ppt / pptx (powerpoint)
  • Всего слайдов:
    71 слайд
  • Для класса:
    1,2,3,4,5,6,7,8,9,10,11
  • Размер файла:
    265.03 kB
  • Просмотров:
    147
  • Скачиваний:
    1
  • Автор:
    неизвестен



Слайды и текст к этой презентации:

№1 слайд
ЛЕКЦИЯ ВВОДНАЯ ЧАСТЬ
Содержание слайда: ЛЕКЦИЯ 1 ВВОДНАЯ ЧАСТЬ (КЛАССИФИКАЦИЯ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ И ИХ СВОЙСТВ, ОСНОВНЫЕ СВОЙСТВА СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ)

№2 слайд
Вопрос . История открытия
Содержание слайда: Вопрос 1. История открытия минеральных вяжущих веществ и бетонов Условно можно выделить три основных по своей продолжительности не равных этапа в ее истории. Первый этап охватывает наиболее длительный период. Имеется достаточно оснований утверждать, что исходным моментом для становления науки о материалах явилось получение керамики путем сознательного изменения структуры глины при ее нагревании и обжиге. Исследования раскопок показывают, что предки улучшали качество изделий вначале подбором глин, затем с помощью изменения режима нагревания и обжига на открытом огне, а позже — в специальных примитивных печах. Со временем чрезмерную пористость изделий научились уменьшать глазурованием. Сознательное создание новых керамических и металлических материалов и изделий было обусловлено определенным прогрессом производства. Возрастала необходимость в более глубоком понимании свойств материалов, особенно прочности, ковкости и других качественных характеристик, а также способов возможного изменения их. К этому времени развились мореплавание, ирригация, постройка пирамид, храмов, укрепление грунтовых дорог и т.д. Пополнились новыми сведениями и фактами теоретические представления о материалах.

№3 слайд
Второй этап развития
Содержание слайда: Второй этап развития строительного материаловедения условно начался со второй половины XIX в. и закончился в первой половине XX в. Второй этап развития строительного материаловедения условно начался со второй половины XIX в. и закончился в первой половине XX в. Важнейшим показателем этого этапа явилось массовое производство различных строительных материалов и изделий, непосредственно связанное с интенсификацией строительства промышленных и жилых зданий, общим прогрессом промышленных отраслей, электрофикацией, введением новых гидротехнических сооружений и т п. Характерным является также конкретное изучение составов и качества производимых материалов, изыскание наилучших видов сырья и технологических способов его переработки, методов оценки свойств строительных материалов со стандартизацией необходимых критериев совершенствования практики изготовления продукции на всех стадиях технологии. В результате строительное материаловедение обогатилось данными петрографии и минералогии при характеристике минерального сырья, используемого после механической переработки либо в сочетании с химической переработкой в виде готовой продукции — природного камня штучного и в рыхлом состоянии, керамики, вяжущих веществ, стекла и др. С той же целью начали применять побочные продукты производств — шлаки, золы, древесные отходы и пр. В номенклатуре материалов, кроме применявшихся на первом этапе камня немолотого или грубо околотого, меди, бронзы, железа и стали, керамики, стекла, отдельных вяжущих, например гипса, извести, появились новые цементы, и начался массовый выпуск портландцемента, открытого Е. Челиевым в начале XIX в. В разработке новых для того времени минеральных вяжущих веществ участвовали А.Р. Шуляченко, И.Г. Малюга, А.А. Байков, В.А. Кинд, В.Н. Юнг, Н.Н. Лямин и другие ученые.

№4 слайд
Быстро развивалось
Содержание слайда: Быстро развивалось производство цементных бетонов различного назначения; сформировалась специальная наука о бетонах — бетоноведение. Быстро развивалось производство цементных бетонов различного назначения; сформировалась специальная наука о бетонах — бетоноведение. В 1895 г. И.Г. Малюга издал первый в нашей стране труд «Состав и способы приготовления цементного раствора (бетона) для получения наибольшей крепости». Он впервые вывел формулу прочности бетона и сформулировал так называемый закон водоцементного отношения. Несколько раньше французский ученый Фере предложил формулу прочности цементного камня (и бетона). В 1918 г. была установлена прочность бетона Абрамсом (США), уточненная Н.М. Беляевым, что послужило исходной позицией для разработки метода подбора (проектирования) состава плотного и высокопрочного бетона. Появилась и формула прочности Боломея (Швейцария), уточненная Б.Г. Скрамтаевым применительно к отечественным исходным компонентам.

№5 слайд
И конце XIX в. формируется
Содержание слайда: И конце XIX в. формируется технология изготовления железобетона и получает развитие наука о железобетоне. Этот высокопрочный материал был предложен французскими учеными Ламбо и Ковалье, садовником Монье (1850—1870). В России А. Шиллер, а затем в 1881 г. Н.А. Белелюбский провели успешные испытания конструкций из железобетона, а в 1911 г. были изданы первые технические условия и нормы для железобетонных конструкций и сооружении. Особого внимания заслужили безбалочные железобетонные междуэтажные перекрытия, разработанные в Москве А.Ф. Лолейтом (1905). И конце XIX в. формируется технология изготовления железобетона и получает развитие наука о железобетоне. Этот высокопрочный материал был предложен французскими учеными Ламбо и Ковалье, садовником Монье (1850—1870). В России А. Шиллер, а затем в 1881 г. Н.А. Белелюбский провели успешные испытания конструкций из железобетона, а в 1911 г. были изданы первые технические условия и нормы для железобетонных конструкций и сооружении. Особого внимания заслужили безбалочные железобетонные междуэтажные перекрытия, разработанные в Москве А.Ф. Лолейтом (1905). В конце XIX в., после успешных исследований, внедрен в строительство предварительно напряженный железобетон. В 1886 г. П. Джексон, Деринг, Мандель, Фрейсине взяли патент на его применение и развили этот метод.

№6 слайд
Массовое производство
Содержание слайда: Массовое производство преднапряженных конструкций началось несколько позже, а в нашей стране — на третьем этапе развития строительного материаловедения. Массовое производство преднапряженных конструкций началось несколько позже, а в нашей стране — на третьем этапе развития строительного материаловедения. К этому периоду относится внедрение и сборного железобетона. Развивались научные концепции производства многих других строительных материалов. Уровень познания поднялся так, что в цементной, полимерной, стекольной и некоторых других отраслях разрыв во времени между окончанием научной разработки и внедрением ее в производство становился весьма малым, т.е. наука превращалась в непосредственную производительную силу.

№7 слайд
Вопрос . Предмет, задачи и
Содержание слайда: Вопрос 2. Предмет, задачи и содержание учебной дисциплины «Материаловедение и технология конструкционных материалов» Учебный курс «Материаловедение и технология конструкционных материалов» предназначен для студентов направления подготовки (специальности) 271501.65 «Строительство железных дорог, мостов и транспортных тоннелей». Введение данной дисциплины в учебный план названного направления подготовки обусловлено необходимостью формирования у будущих специалистов компетенций, позволяющих решать следующие профессиональные задачи в области производственно-технологической и проектно - конструкторской деятельности и научно-исследовательской деятельности: – эффективное использование материалов и оборудования при строительстве железных дорог, мостов и транспортных тоннелей; – анализ причин брака при производстве строительных работ, разработка методов технического контроля и испытаний материалов для объектов; Цель дисциплины: подготовить студентов к профессиональной деятельности. Освоение дисциплины включает в себя: изучение материалов, используемых в строительстве на железной дороге; изучение свойств этих материалов; формирование умения использовать полученные знания для грамотной оценки причин возможных разрушений строительных сооружений, приводящих к авариям и крушениям.

№8 слайд
Профессиональные компетенции
Содержание слайда: Профессиональные компетенции владение методами оценки свойств и способами подбора материалов для проектируемых объектов (ПК-12); способность осуществлять контроль качества используемых на объекте строительства материалов и конструкций (ПК-16).

№9 слайд
Требования к результатам
Содержание слайда: Требования к результатам освоения дисциплины В результате изучения дисциплины студент должен: - знать и понимать физическую сущность явлений, происходящих в материалах в условиях производства и эксплуатации; их связь со свойствами материалов и видами повреждений; основные свойства современных строительных материалов; - уметь использовать полученные знания для того, чтобы правильно выбрать материал, определить вид обработки, необходимой для получения заданной структуры и свойств; правильно оценить поведение материала при воздействии на него различных эксплуатационных факторов и на этой основе, определить условия, режим и сроки эксплуатации сооружения; - владеть навыками использования справочной литературы, государственных стандартов и литературных источников в подборе материалов и оценке качества используемых на объекте строительства материалов и конструкций.

№10 слайд
Связь с другими дисциплинами
Содержание слайда: Связь с другими дисциплинами Дисциплина «Материаловедение и технология конструкционных материалов» преподается на основе ранее изученных дисциплин: 1) Физика 2) Химия 3) История строительства транспортных сооружений и является фундаментом для изучения следующих дисциплин: Сопротивление материалов Строительная механика Механика грунтов Мосты на железных дорогах Основания и фундаменты транспортных сооружений Железнодорожный путь Строительные конструкции и архитектура транспортных сооружений Здания на транспорте Коррозия строительных материалов

№11 слайд
Вопрос . ОБЩАЯ КЛАССИФИКАЦИЯ
Содержание слайда: Вопрос 2. ОБЩАЯ КЛАССИФИКАЦИЯ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ

№12 слайд
По степени готовности
Содержание слайда: По степени готовности различают собственно строительные материалы и строительные изделия - готовые изделия и элементы, монтируемые и закрепляемые на месте работы. К строительным материалам относятся древесина, металлы, цемент, бетон, кирпич, песок, строительные растворы для каменных кладок и различных штукатурок, лакокрасочные материалы, природные камни и т. д. Строительными изделиями являются сборные железобетонные панели и конструкции, оконные и дверные блоки, санитарно-технические изделия и кабины и др. В отличие от изделий строительные материалы перед применением подвергают обработке - смешивают с водой, уплотняют, распиливают, тешут и т. д.

№13 слайд
По происхождению строительные
Содержание слайда: По происхождению строительные материалы подразделяют на природные и искусственные. Природные материалы - это древесина, горные породы (природные камни), торф, природные битумы и асфальты и др. Эти материалы получают из природного сырья путем несложной обработки без изменения их первоначального строения и химического состава. К искусственным материалам относят кирпич, цемент, железобетон, стекло и др. Их получают из природного и искусственного сырья, побочных продуктов промышленности и сельского хозяйства с применением специальных технологий.

№14 слайд
По назначению материалы
Содержание слайда: По назначению материалы подразделяют на следующие группы: конструкционные материалы – материалы, которые воспринимают и передают на грузки в строительных конструкциях; теплоизоляционные материалы, основное назначение которых — свести до минимума перенос теплоты через строительную конструкцию и тем самым обеспечить необходимый тепловой режим в помещении при минимальных затратах энергии; акустические материалы (звукопоглощающие и звукоизоляционные материалы) - для снижения уровня «шумового загрязнения» помещения; гидроизоляционные и кровельные материалы - для создания водонепроницаемых слоев на кровлях, подземных сооружениях и других конструкциях, которые необходимо защищать от воздействия воды или водяных паров; герметизирующие материалы - для заделки стыков в сборных конструкциях; отделочные материалы - для улучшения декоративных качеств строительных конструкций, а также для защиты конструкционных, теплоизоляционных и других материалов от внешних воздействий; материалы специального назначения (например огнеупорные или кислотоупорные), применяемые при возведении специальных сооружений. материалы общего назначения - их используют и в чистом виде, и как сырье для получения других строительных материалов и изделий

№15 слайд
По технологическому признаку
Содержание слайда: По технологическому признаку материалы подразделяют, учитывая вид сырья, из которого получают материал, и вид его изготовления, на следующие группы: Природные каменные материалы и изделия - получают из горных пород путем их обработки: стеновые блоки и камни, облицовочные плиты, детали архитектурного назначения, бутовый камень для фундаментов, щебень, гравий, песок и др. Керамические материалы и изделия - получают из глины с добавками путем формования, сушки и обжига: кирпич, керамические блоки и камни, черепица, трубы, изделия из фаянса и фарфора, плитки облицовочные и для настилки полов, керамзит (искусственный гравий для легких бетонов) и др. Стекло и другие материалы и изделия из минеральных расплавов - оконное и облицовочное стекло, стеклоблоки, стекло профилит (для ограждений), плитки, трубы, изделия из ситаллов и шлакоситаллов, каменное литье.

№16 слайд
Неорганические вяжущие
Содержание слайда: Неорганические вяжущие вещества - минеральные материалы, преимущественно порошкообразные, образующие при смешивании с водой пластичное тело, со временем приобретающее камневидное состояние: цементы различных видов, известь, гипсовые вяжущие и др. Бетоны - искусственные каменные материалы, получаемые из смеси вяжущего, воды, мелкого и крупного заполнителей. Бетон со стальной арматурой называют железобетоном, он хорошо сопротивляется не только сжатию, но и изгибу и растяжению. Строительные растворы — искусственные каменные материалы, состоящие из вяжущего, воды и мелкого заполнителя, которые со временем переходят из тестообразного в камневидное состояние. Искусственные необжиговые каменные материалы - получают на основе неорганических вяжущих и различных заполнителей: силикатный кирпич, гипсовые и гипсобетонные изделия, асбестоцементные изделия и конструкции, силикатные бетоны.

№17 слайд
Органические вяжущие вещества
Содержание слайда: Органические вяжущие вещества и материалы на их основе — битумные и дегтевые вяжущие, кровельные и гидроизоляционные материалы: рубероид, пергамин, изол, бризол, гидроизол, толь, приклеивающие мастики, асфальтовые бетоны и растворы. Органические вяжущие вещества и материалы на их основе — битумные и дегтевые вяжущие, кровельные и гидроизоляционные материалы: рубероид, пергамин, изол, бризол, гидроизол, толь, приклеивающие мастики, асфальтовые бетоны и растворы. Полимерные материалы и изделия - группа материалов, получаемых на основе синтетических полимеров (термопластических нетермореактнвных смол): линолеумы, релин, синтетические ковровые материалы, плитки, древеснослоистые пластики, стеклопластики, пенопласты, поропласты, сотопласты и др. Древесные материалы и изделия - получают в результате механической обработки древесины: круглый лес, пиломатериалы, заготовки для различных столярных изделий, паркет, фанера, плинтусы, поручни, дверные и оконные блоки, клееные конструкции. Металлические материалы - наиболее широко применяемые в строительстве черные металлы (сталь и чугун), стальной прокат (двутавры, швеллеры, уголки), сплавы металлов, особенно алюминиевые.

№18 слайд
Вопрос . ФИЗИЧЕСКИЕ СВОЙСТВА
Содержание слайда: Вопрос 3. ФИЗИЧЕСКИЕ СВОЙСТВА СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ Таблица 1 – Плотность некоторых строительных материалов

№19 слайд
СРЕДНЯЯ ПЛОТНОСТЬ Средняя
Содержание слайда: СРЕДНЯЯ ПЛОТНОСТЬ Средняя плотность ρс — масса единицы объема материала в естественном состоянии, т. е. с порами. Среднюю плотность (в кг/м3, кг/дм3, г/см3) вычисляют по формуле: Где, m -масса материала, кг, г; Vе - объем материала, м3, дм3, см3.

№20 слайд
ОТНОСИТЕЛЬНАЯ ПЛОТНОСТЬ
Содержание слайда: ОТНОСИТЕЛЬНАЯ ПЛОТНОСТЬ Относительная плотность d - отношение средней плотности материала к плотности стандартного вещества. За стандартное вещество принята вода при температуре 4°С, имеющая плотность 1000 кг/м3. Относительная плотность (безразмерная величина) определяется по формуле:

№21 слайд
ИСТИННАЯ ПЛОТНОСТЬ Истинная
Содержание слайда: ИСТИННАЯ ПЛОТНОСТЬ Истинная плотность ρu — масса единицы объема абсолютно плотного материала, т. е. без пор и пустот. Вычисляется она в кг/м3, кг/дм3, г/см3 по формуле:   Где, m — масса материала, кг, г; Vа — объем материала в плотном состоянии, м3, дм3, см3.

№22 слайд
ПОРИСТОСТЬ Пористость П -
Содержание слайда: ПОРИСТОСТЬ Пористость П - степень заполнения объема материала порами. Вычисляется в % по формуле: Где: ρс, ρu - средняя и истинная плотности материала.

№23 слайд
Вопрос . ГИДРОФИЗИЧЕСКИЕ
Содержание слайда: Вопрос 4. ГИДРОФИЗИЧЕСКИЕ СВОЙСТВА СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ Гигроскопичность - свойство капиллярно-пористого материала поглощать водяной пар из влажного воздуха. Поглощение влаги из воздуха объясняется адсорбцией водяного пара на внутренней поверхности пор и капиллярной конденсацией. Этот процесс, называемый сорбцией, обратимый. Водопоглощение - способность материала поглощать и удерживать воду. Водопоглощение характеризует в основном открытую пористость, так как вода не проходит в закрытые поры. Степень снижения прочности материала при предельном его водонасыщении называется водостойкостью. Водостойкость численно характеризуется коэффициентом размягчения Кразм, который характеризует степень снижения прочности в результате его насыщения водой. Влажность - это степень содержания влаги в материале. Зависит от влажности окружающей среды, свойств и структуры самого материала.

№24 слайд
ВОДОПРОНИЦАЕМОСТЬ
Содержание слайда: ВОДОПРОНИЦАЕМОСТЬ Водопроницаемость - способность материала пропускать воду под давлением. Она характеризуется коэффициентом фильтрации Кф, м/ч, который равен количеству воды Vв в м3, проходящей через материал площадью S = 1 м2, толщиной а = 1 м за время t = 1 ч, при разности гидростатического давления P1 - Р2 = 1 м водного столба:     Обратной характеристикой водопроницаемости является водонепроницаемость - способность материала не пропускать воду под давлением.

№25 слайд
ПАРОПРОНИЦАЕМОСТЬ
Содержание слайда: ПАРОПРОНИЦАЕМОСТЬ Паропроницаемость - способность материалов пропускать водяной пар через свою толщину. Она характеризуется коэффициентом паропроницаемости μ, г/(м*ч*Па), который равен количеству водяного пара V в м3, проходящего через материал толщиною а = 1м, площадью S = 1 м² за время t = 1 ч, при разности парциальных давлений Р1 - Р2 = 133,3 Па:

№26 слайд
МОРОЗОСТОЙКОСТЬ
Содержание слайда: МОРОЗОСТОЙКОСТЬ Морозостойкость - способность материала в водонасыщенном состоянии не разрушаться при многократном попеременном замораживании и оттаивании. Разрушение происходит из-за того, что объем воды при переходе в лед увеличивается на 9%. Давление льда на стенки пор вызывает растягивающие усилия в материале.

№27 слайд
Вопрос . ТЕПЛОФИЗИЧЕСКИЕ
Содержание слайда: Вопрос 5. ТЕПЛОФИЗИЧЕСКИЕ СВОЙСТВА СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ Теплопроводность - способность материалов проводить тепло. Теплопередача происходит в результате перепада температур между поверхностями, ограничивающими материал. Теплопроводность зависит от коэффициента теплопроводности λ, Вт/(м*°С), который равен количеству тепла Q, Дж, проходящего через материал толщиной d = 1 м, площадью S = 1 м2 за время t = 1 ч, при разности температур между поверхностями t2- t1 = 1 °С: коэффициент теплопроводности λ, Вт/(мх°С), материала в воздушно-сухом состоянии:

№28 слайд
ТЕПЛОЕМКОСТЬ Теплоемкость -
Содержание слайда: ТЕПЛОЕМКОСТЬ Теплоемкость - способность материалов поглощать тепло при нагревании. Она характеризуется удельной теплоемкостью с, Дж/(кг*°С), которая равна количеству тепла Q, Дж, затраченному на нагревание материала массой m = 1 кг, чтобы повысить его температуру на t2-t1 = 1°С:

№29 слайд
ОГНЕСТОЙКОСТЬ Огнестойкость -
Содержание слайда: ОГНЕСТОЙКОСТЬ Огнестойкость - способность материала выдерживать без разрушений одновременное действие высоких температур и воды. Пределом огнестойкости конструкции называется время в часах от начала огневого испытания до появления одного из следующих признаков: сквозных трещин, обрушения, повышения температуры на необогреваемой поверхности. По огнестойкости строительные материалы делятся на три группы: несгораемые, трудносгораемые, сгораемые. - несгораемые материалы под действием высокой температуры или огня не тлеют и не обугливаются; - трудносгораемые материалы с трудом воспламеняются, тлеют и обугливаются, но происходит это только при наличии огня; - сгораемые материалы воспламеняются или тлеют и продолжают гореть или тлеть после удаления источника огня.

№30 слайд
ОГНЕУПОРНОСТЬ Огнеупорность -
Содержание слайда: ОГНЕУПОРНОСТЬ Огнеупорность - способность материала противостоять длительному воздействию высоких температур, не деформируясь и не расплавляясь. По степени огнеупорности материалы подразделяются на: - огнеупорные, которые выдерживают действие температур от 1580 °С и выше; - тугоплавкие, которые выдерживают температуру 1360... 1580°C; - легкоплавкие, выдерживающие температуру ниже 1350 °С.

№31 слайд
Вопрос . МЕХАНИЧЕСКИЕ
Содержание слайда: Вопрос 6. МЕХАНИЧЕСКИЕ СВОЙСТВА СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ   К основным механическим свойствам материалов относят: прочность, упругость, пластичность, релаксацию, хрупкость, твердость, истираемость и др.

№32 слайд
ПРОЧНОСТЬ Прочность -
Содержание слайда: ПРОЧНОСТЬ Прочность - способность материалов сопротивляться разрушению и деформациям от внутренних напряжений, возникающих в результате воздействия внешних сил или других факторов, таких как неравномерная осадка, нагревание и т. п. Оценивается она пределом прочности. Так называют напряжение, возникающее в материале от действия нагрузок, вызывающих его разрушение.

№33 слайд
ПРЕДЕЛЫ ПРОЧНОСТИ Различают
Содержание слайда: ПРЕДЕЛЫ ПРОЧНОСТИ Различают пределы прочности материалов при: сжатии, растяжении, изгибе, срезе и пр. Предел прочности при сжатии и растяжении RСЖ(Р), МПа, вычисляется как отношение нагрузки, разрушающей материал R, Н, к площади поперечного сечения F, мм2: Предел прочности при изгибе RИ, МПа, вычисляют как отношение изгибающего момента M, Н*мм, к моменту сопротивления образца, мм3:

№34 слайд
КОЭФФИЦИЕНТ КОНСТРУКТИВНОГО
Содержание слайда: КОЭФФИЦИЕНТ КОНСТРУКТИВНОГО КАЧЕСТВА Важной характеристикой материалов является коэффициент конструктивного качества. Это условная величина, которая равна отношению предела прочности материала R, МПа, к его относительной плотности: к.к.к. = R/d

№35 слайд
УПРУГОСТЬ Упругость -
Содержание слайда: УПРУГОСТЬ Упругость - способность материалов под воздействием нагрузок изменять форму и размеры и восстанавливать их после прекращения действия нагрузок. Упругость оценивается пределом упругости буп, МПа, который равен отношению наибольшей нагрузки, не вызывающей остаточных деформаций материала, PУП, Н, к площади первоначального поперечного сечения F0, мм2:  бУП = РУП/F0

№36 слайд
Пластичность - способность
Содержание слайда: Пластичность - способность материалов изменять свою форму и размеры под воздействием нагрузок и сохранять их после снятия нагрузок. Пластичность характеризуется относительным удлинением или сужением. Пластичность - способность материалов изменять свою форму и размеры под воздействием нагрузок и сохранять их после снятия нагрузок. Пластичность характеризуется относительным удлинением или сужением. Разрушение материалов может быть хрупким или пластичным. При хрупком разрушении пластические деформации незначительны. Релаксация - способность материалов к самопроизвольному снижению напряжений при постоянном воздействии внешних сил. Это происходит в результате межмолекулярных перемещений в материале. Твердость - способность материала оказывать сопротивление проникновению в него более твердого материала. Для разных материалов она определяется по разным методикам.

№37 слайд
РАСПОЛОЖЕНИЕ МИНЕРАЛОВ ПО
Содержание слайда: РАСПОЛОЖЕНИЕ МИНЕРАЛОВ ПО ШКАЛЕ МООСА При испытании природных каменных материалов пользуются шкалой Мооса, составленной из 10 минералов, расположенных в ряд, с условным показателем твердости от 1 до 10, когда более твердый материал, имеющий более высокий порядковый номер, царапает предыдущий. Минералы расположены в следующем порядке: тальк или мел, гипс или каменная соль, кальцит или ангидрит, плавиковый шпат, апатит, полевой шпат, кварцит, топаз, корунд, алмаз.

№38 слайд
ИСТИРАЕМОСТЬ ИЗНОС ХРУПКОСТЬ
Содержание слайда: ИСТИРАЕМОСТЬ ИЗНОС ХРУПКОСТЬ Истираемость - способность материалов разрушаться под действием истирающих усилий. Истираемость И в г/см2 вычисляется как отношение потери массы образцом m1-m2 в г от воздействия истирающих усилий к площади истирания F в см2;  И = (m1 - m2) / Р Износ - свойство материала сопротивляться одновременному воздействию истирания и ударов. Износ материала зависит от его структуры, состава, твердости, прочности, истираемости. Хрупкость - свойство материала внезапно разрушаться под воздействием нагрузки, без предварительного заметного изменения формы и размеров.

№39 слайд
Вопрос . ПОНЯТИЕ ГОРНАЯ
Содержание слайда: Вопрос 7. ПОНЯТИЕ ГОРНАЯ ПОРОДА И МИНЕРАЛ. ОСНОВНЫЕ ПОРОДООБРАЗУЮЩИЕ МИНЕРАЛЫ Горные породы - главный источник получения строительных материалов. Горные породы используют в промышленности строительных материалов как сырье для изготовления керамики, стекла, теплоизоляционных и других изделий, а также для производства неорганических вяжущих веществ - цементов, извести и гипсовых. Горные породы - это природные образования более или менее определенного состава и строения, образующие в земной коре самостоятельные геологические тела. Минералами называют однородные по химическому составу и физическим свойствам составные части горной породы. Большинство минералов - твердые тела, иногда встречаются жидкие (самородная ртуть).

№40 слайд
ГЕНЕТИЧЕСКИЕ ГРУППЫ ГОРНЫХ
Содержание слайда: ГЕНЕТИЧЕСКИЕ ГРУППЫ ГОРНЫХ ПОРОД В зависимости от условий формирования горные породы делят на три генетические группы: 1) магматические породы, образовавшиеся в результате охлаждения и затвердевания магмы; 2) осадочные породы, возникшие в поверхностных слоях земной коры из продуктов выветривания и разрушения различных горных пород; 3) метаморфические породы, являющиеся продуктом перекристаллизации и приспособления горных пород к изменившимся в земной коре физико-химическим условиям.

№41 слайд
ПОРОДООБРАЗУЮЩИЕ МИНЕРАЛЫ
Содержание слайда: ПОРОДООБРАЗУЮЩИЕ МИНЕРАЛЫ Основными породообразующими минералами являются: - кремнезем, - алюмосиликаты, - железисто-магнезиальные, - карбонаты, - сульфаты.

№42 слайд
МИНЕРАЛЫ ГРУППЫ КРЕМНЕЗЕМА .
Содержание слайда: МИНЕРАЛЫ ГРУППЫ КРЕМНЕЗЕМА . К минералам этой группы относят кварц. Он может находиться как в кристаллической, так и аморфной форме. Кристаллический кварц в виде диоксида кремния SiО2 - один из самых распространенных минералов в природе. Аморфный кремнезем встречается в виде опала SiО2 * NH2О. Кварц отличается высокой химической стойкостью при обычной температуре. Кварц плавится при температуре около 1700оС, поэтому широко используется в огнеупорных материалах.

№43 слайд
МИНЕРАЛЫ ГРУППЫ
Содержание слайда: МИНЕРАЛЫ ГРУППЫ АЛЮМОСИЛИКАТОВ Минералы группы алюмосиликатов - полевые шпаты, слюды, каолиниты. Полевые шпаты составляют 58% всей литосферы и являются самыми распространенными минералами. Разновидностями их являются: ортоклаз Плагиоклазы Ортоклаз - калиевый полевой шпат - K2О * Al2О3 * 6SiО2. Имеет среднюю плотность 2,57 г/см3, твердость - 6-6,5. Является основной частью гранитов, сиенитов. Плагиоклазы - минералы, состоящие из смеси твердых растворов альбита и анортита. Альбит - натриевый полевой шпат - Na2О * Al2О3 * 6SiО2. Анортит - кальциевый полевой шпат – CaO * Al2О3 * 2SiО2.

№44 слайд
СЛЮДЫ Слюды - водные
Содержание слайда: СЛЮДЫ Слюды - водные алюмосиликаты слоистого строения, способные расщепляться на тонкие пластинки. Наиболее часто встречаются два вида - мусковит и биотит. Мусковит - калиевая бесцветная слюда. Обладает высокой химической стойкостью, тугоплавка. Биотит - железисто-магнезиальная слюда черного или зелено-черного цветов. Водной разновидностью слюды является вермикулит. Он образован из биотита в результате воздействия гидротермальных процессов. При нагревании вермикулита до 750°С теряется химически связанная вода, в результате чего объем его увеличивается в 18-40 раз. Вспученный вермикулит применяют в качестве теплоизоляционного материала. Каолинит - Al2О3 * 2SiО2 * 2H2О - минерал, получаемый в результате разрушения полевых шпатов и слюд. Залегает в виде землистых рыхлых масс. Применяют для изготовления керамических материалов.

№45 слайд
ЖЕЛЕЗИСТО-МАГНЕЗИАЛЬНЫЕ
Содержание слайда: ЖЕЛЕЗИСТО-МАГНЕЗИАЛЬНЫЕ СИЛИКАТЫ. Минералами этой группы являются пироксены, амфиболы и оливин. К пироксенам относят авгит, входящий в состав габбро, к амфиболам - роговую обманку, входящую в состав гранитов. Оливин входит в состав диабазов и базальтов. Продукт выветривания оливина - хризотил-асбест. Эти минералы являются силикатами магния и железа и имеют темную окраску. Они обладают высокой ударной вязкостью и стойкостью против выветривания.

№46 слайд
МИНЕРАЛЫ ГРУППЫ КАРБОНАТОВ К
Содержание слайда: МИНЕРАЛЫ ГРУППЫ КАРБОНАТОВ К ним относят кальцит, магнезит, доломит. Они входят в состав осадочных горных пород. Кальцит - СаСО3 - имеет среднюю плотность 2,7 г/см3, твердость - 3. Вскипает при воздействии слабого раствора соляной кислоты. Входит в состав известняков, мраморов, травертинов. Магнезит - MgCО3 - имеет среднюю плотность 3,0 г/см3, твердость - 3,5-4. Вскипает от горячей соляной кислоты. Образует породу с тем же названием. Доломит - CaCО3 * MgCО3 - имеет плотность 2,8-2,9 г/см3, твердость - 3,5-4. По свойствам занимает среднее положение между кальцитом и магнезитом. Входит в состав мраморов. Образует породу с таким же названием.

№47 слайд
МИНЕРАЛЫ ГРУППЫ СУЛЬФАТОВ
Содержание слайда: МИНЕРАЛЫ ГРУППЫ СУЛЬФАТОВ Гипс - CaSО4 * 2H2О - имеет среднюю плотность 2,3 г/см3, твердость - 1,5-2,0, цвета - белый, серый, красноватый. Строение - кристаллическое. Хорошо растворяется в воде. Образует породу - гипсовый камень. Ангидрит - CaSО4 - имеет среднюю плотность 2,9-3 г/см3, твердость - 3-3,5, строение - кристаллическое. При насыщении водой переходит в гипс.

№48 слайд
КЛАССИФИКАЦИЯ ГОРНЫХ ПОРОД ПО
Содержание слайда: КЛАССИФИКАЦИЯ ГОРНЫХ ПОРОД ПО ПРОИСХОЖДЕНИЮ Каменные строительные материалы включают широкую номенклатуру изделий, получаемых из горных пород: - рваный камень в виде кусков неправильной формы (бут, щебень и др.), - изделия правильной формы (блоки, штучный камень, плиты, бруски), профилированные изделия и др.

№49 слайд
КЛАССИФИКАЦИЯ ГОРНЫХ ПОРОД ПО
Содержание слайда: КЛАССИФИКАЦИЯ ГОРНЫХ ПОРОД ПО ПРОИСХОЖДЕНИЮ По происхождению горные породы делят на три основных вида: магматические, или изверженные (глубинные, или излившиеся), образовавшиеся в результате затвердевания в недрах земли или на ее поверхности, в основном из силикатного расплава - магмы; осадочные, образовавшиеся путем осаждения неорганических и органических веществ на дне водных бассейнов и на поверхности земли; метаморфические - кристаллические горные породы, возникшие в результате преобразования магматических или осадочных пород при воздействии температуры, давления и флюидов (существенно водно-углекислых газово-жидких или жидких, часто надкритических растворов).

№50 слайд
Изверженные горные породы
Содержание слайда: Изверженные горные породы подразделяют на: -глубинные, - излившиеся, - обломочные.

№51 слайд
ГЛУБИННЫЕ ПОРОДЫ Образовались
Содержание слайда: ГЛУБИННЫЕ ПОРОДЫ Образовались в результате остывания магмы в недрах земной коры. Затвердевание происходило медленно и под давлением. В этих условиях расплав полностью кристаллизовался с образованием крупных зерен минералов. К главнейшим глубинным породам относят гранит, сиенит, диорит и габбро. Гранит состоит из зерен кварца, полевого шпата (ортоклаза), слюды или железисто-магнезиальных силикатов. Имеет среднюю плотность 2,6 г/см3, предел прочности при сжатии - 100-300 МПа. Цвета - серый, красный. Он обладает высокой морозостойкостью, малой истираемостью, хорошо шлифуется, полируется, стоек против выветривания. Применяют его для изготовления облицовочных плит, архитектурно-строительных изделий, лестничных ступеней, щебня. Сиенит состоит из полевого шпата (ортоклаза), слюды и роговой обманки. Кварц отсутствует или имеется в незначительном количестве. Средняя плотность составляет 2,7 г/см3, предел прочности при сжатии - до 220 МПа. Цвета - светло-серый, розовый, красный. Он обрабатывается легче, чем гранит, применяют для тех же целей. Диорит состоит из плагиоклаза, авгита, роговой обманки, биотита. Средняя плотность его составляет 2,7-2,9 г/см3, предел прочности при сжатии - 150-300 МПа. Цвета - от серо-зеленого до темно-зеленого. Он стоек против выветривания, имеет малую истираемость. Применяют диорит для изготовления облицовочных материалов, в дорожном строительстве. Габбро - кристаллическая порода, состоящая из плагиоклаза, авгита, оливина. В составе его может быть биотит и роговая обманка. Имеет среднюю плотность 2,8-3,1 г/см3, предел прочности при сжатии - до 350 МПа. Цвета - от серого или зеленого, до черного. Применяют для облицовки цоколей, устройства полов.

№52 слайд
Излившиеся горные породы
Содержание слайда: Излившиеся горные породы Образовались при остывании магмы на небольшой глубине или на поверхности земли. К излившимся породам относят: - порфиры, - диабаз, - трахит, - андезит, -базальт.

№53 слайд
Излившиеся горные породы
Содержание слайда: Излившиеся горные породы Порфиры являются аналогами гранита, сиенита, диорита. Средняя плотность составляет 2,4-2,5 г/см3, предел прочности при сжатии - 120-340 МПа. Цвета - от красно-бурого до серого. Структура - порфировидная, т. е. с крупными вкраплениями в мелкозернистую структуру, чаще всего ортоклаза или кварца. Их применяют для изготовления щебня, декоративно-поделочных целей. Диабаз является аналогом габбро, имеет кристаллическую структуру. Средняя плотность его составляет 2,9-3,1 г/см3, предел прочности при сжатии - 200-300 МПа, цвета - от темно-серого до черного. Применяют для наружной облицовки зданий, изготовления бортовых камней, в виде щебня для кислотоупорных футеровок. Температура плавления его невысокая - 1200-1300 °С, что позволяет применять диабаз для каменного литья. Трахит является аналогом сиенита. Имеет тонкопористое строение. Средняя плотность его составляет 2,2 г/см3, предел прочности при сжатии - 60-70 МПа. Окраска - светло-желтая или серая. Применяют для изготовления - стеновых материалов, крупного заполнителя для бетона. Андезит является аналогом диорита. Имеет среднюю плотность 2,9 г/см3, прочность при сжатии - 140-250 МПа, окраску - от светлой до темно-серой. Применяют в строительстве - для изготовления ступеней, облицовочного материала, как кислотостойкий материал. Базальт - аналог габбро. Имеет стекловидную или кристаллическую структуру. Средняя плотность его составляет 2,7-3,3 г/см3, предел прочности при сжатии - от 50 до 300 МПа. Цвета - темно-серый или почти черный. Применяют для изготовления бортовых камней, облицовочных плит, щебня для бетонов. Является сырьем для изготовления каменных литых материалов, базальтового волокна.

№54 слайд
Обломочные породы
Содержание слайда: Обломочные породы Представляют собой выбросы вулканов. В результате быстрого охлаждения магмы образовались породы стекловидной пористой структуры. Их подразделяют на рыхлые и цементированные. К рыхлым относят вулканические пеплы, песок и пемзу. Вулканические пеплы - порошкообразные частицы вулканической лавы размером до 1 мм. Более крупные частицы размером от 1 до 5 мм называют песком. Пеплы применяют как активную минеральную добавку в вяжущие, пески - в качестве мелкого заполнителя для легких бетонов. Пемза - пористая порода ячеистого строения, состоящая из вулканического стекла. Пористая структура образовалась в результате воздействия газов и паров воды на остывавшую лаву, средняя плотность составляет 0,15-0,5 г/см3, предел прочности при сжатии - 2-3 МПа. В результате высокой пористости (до 80%,) имеет низкий коэффициент теплопроводности А = 0,13...0,23 Вт/(м·°С). Применяют ее в виде заполнителей для легких бетонов, теплоизоляционных материалов, в качестве активной минеральной добавки для извести и цементов.

№55 слайд
Цементированные породы К
Содержание слайда: Цементированные породы К цементированным породам относят вулканические туфы. Вулканические туфы - пористые стекловидные породы, образовавшиеся в результате уплотнения вулканических пеплов и песков. Средняя плотность туфов составляет 1,25-1,35 г/см3, пористость - 40-70%, предел прочности при сжатии - 8-20 МПа, коэффициент теплопроводности 1 = 0,21...0,33 Вт/(м·°С). Цвета — розовый, желтый, оранжевый, голубовато-зеленый. Применяют их в качестве стенового материала, облицовочных плит для внутренней и наружной облицовки зданий.

№56 слайд
МЕТАМОРФИЧЕСКИЕ ГОРНЫЕ ПОРОДЫ
Содержание слайда: МЕТАМОРФИЧЕСКИЕ ГОРНЫЕ ПОРОДЫ К метаморфическим горным породам относят: гнейсы, глинистые сланцы, кварцит, мрамор

№57 слайд
МАГМАТИЧЕСКИЕ ГОРНЫЕ ПОРОДЫ
Содержание слайда: МАГМАТИЧЕСКИЕ ГОРНЫЕ ПОРОДЫ Магматические горные породы - это породы, образовавшиеся непосредственно из магмы (расплавленной массы преимущественно силикатного состава), в результате её охлаждения и застывания. По условиям образования различают две подгруппы магматических горных пород: • интрузивные (глубинные), от латинского слова “интрузио” – внедрение; • эффузивные (излившиеся) от латинского слова “эффузио” – излияние.

№58 слайд
МАГМАТИЧЕСКИЕ ГОРНЫЕ ПОРОДЫ
Содержание слайда: МАГМАТИЧЕСКИЕ ГОРНЫЕ ПОРОДЫ Интрузивные (глубинные) горные породы образуются при медленном постепенном остывании магмы, внедренной в нижние слои земной коры, в условиях повышенного давления и высоких температур. Эффузивные (излившиеся) горные породы образуются при остывании магмы в виде лавы (от итальянского “лава” – затопляю) на поверхности земной коры или вблизи нее.

№59 слайд
Основные отличительные
Содержание слайда: Основные отличительные признаки эффузивных (излившихся) магматических горных пород, которые определяются их происхождением и условиями образования, следующие: Основные отличительные признаки эффузивных (излившихся) магматических горных пород, которые определяются их происхождением и условиями образования, следующие: • для большинства образцов грунтов характерна некристаллическая, тонко-мелкозернистая структура с отдельными видимыми глазом кристаллами; • для некоторых образцов грунтов характерно наличие пустот, пор, пятен; • в некоторых образцах грунтов присутствует какая-либо закономерность пространственной ориентировки компонентов (окраски, овальных пустот и др.).

№60 слайд
ОСАДОЧНЫЕ ГОРНЫЕ ПОРОДЫ
Содержание слайда: ОСАДОЧНЫЕ ГОРНЫЕ ПОРОДЫ Осадочные горные породы по условиям образования подразделяют на: обломочные (механические отложения), химические осадки, органогенные.

№61 слайд
ОБЛОМОЧНЫЕ ПОРОДЫ
Содержание слайда: ОБЛОМОЧНЫЕ ПОРОДЫ Образовались в результате физического выветривания, т. е. воздействия ветра, воды, знакопеременных температур. Их подразделяют на рыхлые и цементированные. К рыхлым относят песок, гравий, глину. =Песок представляет собой смесь зерен с размером частиц от 0,1 до 5 мм, образовавшуюся в результате выветривания изверженных и осадочных горных пород. =Гравий - горная порода, состоящая из округлых зерен от 5 до 150 мм различного минералогического состава. Применяют для бетонов и растворов, в дорожном строительстве. =Глины - тонкообломочные породы, состоящие из частиц мельче 0,01 мм. Цвета - от белого до черного. По составу подразделяют на каолинитовые, монтмориллокитовые, галлуазитовые. Являются сырьем для керамической и цементной промышленности.

№62 слайд
ЦЕМЕНТИРОВАННЫЕ ОСАДОЧНЫЕ
Содержание слайда: ЦЕМЕНТИРОВАННЫЕ ОСАДОЧНЫЕ ГОРНЫЕ ПОРОДЫ К цементированным осадочным горным породам относят песчаник, конгломерат и брекчию. =Песчаник - горная порода, состоящая из цементированных зерен кварцевого песка. Природными цементами служат глина, кальцит, кремнезем. Средняя плотность кремнистого песчаника составляет 2,5-2,6 г/см3, предел прочности при сжатии - 100-250 МПа. Применяют для изготовления щебня, облицовки зданий и сооружений. =Конгломерат и брекчия. Конгломерат - горная порода, состоящая из зерен гравия, сцементированных природным цементом, брекчия - из сцементированных зерен щебня. Средняя плотность их составляет 2,6-2,85 г/см3, предел прочности при сжатии - 50-160 МПа. Применяют конгломерат и брекчию для покрытия полов, изготовления заполнителей для бетона.

№63 слайд
Химические осадки Химические
Содержание слайда: Химические осадки Химические осадки образовались в результате выпадения солей при испарении воды в водоемах. К ним относят гипс, ангидрит, магнезит, доломит и известковые туфы. =Гипс состоит в основном из минералов гипса - CaSО4 x 2H2О. Это порода белого или серого цвета. Применяют для изготовления гипсовых вяжущих веществ и для облицовки внутренних частей зданий. =Ангидрит включает минералы ангидрита - CaSО4. Цвета - светлые с голубовато-серыми оттенками. Применяют там же, где и гипс. =Магнезит состоит из минерала магнезита - MgCО3. Применяют его для изготовления вяжущего каустического магнезита и огнеупорных изделий. =Доломит включает минерал доломита - CaCО3 x MgCО3. Цвет - серо-желтый. Применяют для изготовления облицовочных плит и внутренней облицовки, щебня, огнеупорных материалов, вяжущего вещества - каустического доломита. =Известковые туфы состоят из минерала кальцита – СаСО3. Это пористые породы светлых тонов. Имеют среднюю плотность 1,3-1,6 г/см3, предел прочности при сжатии - 15-80 МПа. Из них изготавливают штучные камни для стен, облицовочные плиты, легкие заполнители для бетонов, известь.

№64 слайд
Органогенные породы
Содержание слайда: Органогенные породы Органогенные породы образовались в результате жизнедеятельности и отмирания организмов в воде. К ним относят известняки, мел, диатомит, трепел. =Известняки - горные породы, состоящие в основном из кальцита – СаСО3. Могут содержать примеси глины, кварца, железисто-магнезиальных и других соединений. Образовались в водных бассейнах из остатков животных организмов и растений. По структуре известняки подразделяют на плотные, пористые, мраморовидные, ракушечниковые и другие. Плотные известняки имеют среднюю плотность 2,0-2,6 г/см3, предел прочности при сжатии - 20-50 МПа; пористые - среднюю плотность 0,9-2,0 г/см3, предел прочности при сжатии - от 0,4 до 20 МПа. Цвета - белый, светло-серый, желтоватый. Применяют их для изготовления облицовочных плит, архитектурных деталей, щебня, в качестве сырья для цемента, извести. Известняк-ракушечник состоит из раковин моллюсков и их обломков. Это пористая порода со средней плотностью 0,9-2,0 г/см3, с пределом прочности при сжатии - 0,4-15,0 МПа. Применяют для изготовления стеновых материалов и плит для внутренней и наружной облицовки зданий. =Мел - горная порода, состоящая из кальцита – СаСО3. Образована раковинами простейших животных организмов. Цвет - белый. Применяется для приготовления красочных составов, замазки, изготовления извести, цемента. =Диатомит - горная порода, состоящая из аморфного кремнезема. Образована мельчайшими панцирями диатомовых водорослей и скелетами животных организмов. Слабосцементированная или рыхлая порода со средней плотностью 0,4-1,0 г/см3. Цвет - белый с желтоватым или серым оттенком. =Трепел - сходная с диатомитом порода, но более раннего образования. Сложена, в основном, сферическими тельцами опала и халцедона. Применяют диатомит и трепел для изготовления теплоизоляционных материалов, легкого кирпича, активных добавок в вяжущие вещества.

№65 слайд
МЕТАМОРФИЧЕСКИЕ ГОРНЫЕ ПОРОДЫ
Содержание слайда: МЕТАМОРФИЧЕСКИЕ ГОРНЫЕ ПОРОДЫ К метаморфическим горным породам относят гнейсы, глинистые сланцы, кварцит, мрамор. Гнейсы - сланцевые породы, образовавшиеся чаще всего в результате перекристаллизации гранитов при высокой температуре и одноосном давлении. Их минералогический состав - как у гранитов. Применяют их для изготовления облицовочных плит, бутового камня. Глинистые сланцы - породы, образовавшиеся в результате видоизменения глины под большим давлением. Средняя плотность составляет 2,7-2,9 г/см3, предел прочности при сжатии - 60-120 МПа. Цвета - темно-серый, черный. Раскалываются на тонкие пластинки толщиной 3-10 мм. Применяют для изготовления облицовочных и кровельных материалов. Кварцит - мелкозернистая горная порода, образовавшаяся в результате перекристаллизации кремнистых песчаников. Средняя плотность составляет 2,5-2,7 г/см3, предел прочности при сжатии - до 400 МПа. Цвета - серый, розовый, желтый, темно-вишневый, малиново-красный и др. Применяют для облицовки зданий, архитектурно-строительных изделий, в виде щебня. Мрамор - горная порода, образовавшаяся в результате перекристаллизации известняков и доломитов при высоких температурах и давлении. Средняя плотность составляет 2,7-2,8 г/см3, предел прочности при сжатии - 40-170 МПа. Окраска - белая, серая, цветная. Он легко распиливается, шлифуется, полируется. Применяют для изготовления архитектурных изделий, облицовочных плит, в качестве заполнителя для декоративных растворов и бетонов.

№66 слайд
ПРИМЕНЕНИЕ ПРИРОДНЫХ КАМЕННЫХ
Содержание слайда: ПРИМЕНЕНИЕ ПРИРОДНЫХ КАМЕННЫХ МАТЕРИАЛОВ В СТРОИТЕЛЬСТВЕ Природные каменные материалы подразделяют на сырьевые и готовые материалы и изделия. К сырьевым материалам относят щебень, гравий и песок, применяемые в качестве заполнителей для бетонов и растворов; известняк, мел, гипс, доломит, магнезит, глина, мергели и другие горные породы - для изготовления строительной извести, гипсовых вяжущих, магнезиальных вяжущих, портландцементов. Готовые каменные материалы и изделия подразделяют на материалы и изделия для дорожного строительства, стен и фундаментов, облицовки зданий и сооружений. К каменным материалам для дорожного строительства относят булыжный, колотый, брусчатый и бортовые камни, щебень, гравий, песок. Их получают из изверженных и прочных осадочных горных пород.

№67 слайд
ПРИМЕНЕНИЕ ПРИРОДНЫХ КАМЕННЫХ
Содержание слайда: ПРИМЕНЕНИЕ ПРИРОДНЫХ КАМЕННЫХ МАТЕРИАЛОВ В СТРОИТЕЛЬСТВЕ Булыжный камень представляет собой зерна горной породы с овальными поверхностями размером до 300 мм. Колотый камень должен иметь форму, близкую к многогранной призме или усеченной пирамиде с площадью лицевой поверхности не менее 100 см2 для камней высотой до 160 мм, не менее 200 см2 - при высоте до 200 мм и не менее 400 см2 - при высоте до 300 мм. Верхняя и нижняя плоскости камня должны быть параллельными. Булыжный и колотый камни применяют для устройства оснований и покрытий автомобильных дорог, крепления откосов насыпей, каналов.

№68 слайд
ПРИМЕНЕНИЕ ПРИРОДНЫХ КАМЕННЫХ
Содержание слайда: ПРИМЕНЕНИЕ ПРИРОДНЫХ КАМЕННЫХ МАТЕРИАЛОВ В СТРОИТЕЛЬСТВЕ Камень брусчатый для дорожных покрытий имеет форму прямоугольного параллелепипеда. По размерам подразделяют на высокий (БВ), длиной 250, шириной 125 и высотой 160 мм, средний (БС) с размерами соответственно 250, 125, 130 мм и низкий (БН) с размерами 250,100 и 100 мм. Верхняя и нижняя плоскости камня параллельны, боковые грани для БВ и БС сужены на 10 мм, для БН - на 5 мм. Изготавливают его из гранита, базальта, диабаза и других горных пород с пределом прочности при сжатии 200-400 МПа. Применяют для мощения площадей, улиц. Камни бортовые из горных пород применяют для отделения проезжей части дорог от разделительных полос тротуаров, пешеходных дорожек и тротуаров от газонов и т. п. По способу изготовления подразделяют на пиленые и колотые. По форме бывают прямоугольные и криволинейные. Имеют высоту от 200 до 600, ширину - от 80 до 200 и длину - от 700 до 2000 мм. Бутовый камень - куски камня неправильной формы размером не более 50 см по наибольшему измерению. Бутовый камень может быть рваный (неправильной формы), и постелистый.

№69 слайд
ПРИМЕНЕНИЕ ПРИРОДНЫХ КАМЕННЫХ
Содержание слайда: ПРИМЕНЕНИЕ ПРИРОДНЫХ КАМЕННЫХ МАТЕРИАЛОВ В СТРОИТЕЛЬСТВЕ Щебень представляет собой рыхлый материал, полученный дроблением скальных горных пород с прочностью 80-120 МПа. При размере зерен от 5 до 40 мм его применяют для черного щебня и асфальтобетона при строительстве автомобильных дорог, щебень с зернами от 5 до 60 мм служит для устройства балластного слоя железнодорожного пути. Гравий - рыхлый материал, образовавшийся при естественном разрушении горных пород. Имеет скатанную форму. Для изготовления черного гравия применяют гравий с размером зерен от 5 до 40 мм, а для асфальтобетона его дробят обычно на щебень. Песок - рыхлый материал с размерами зерен от 0,16 до 5 мм, образовавшийся в результате естественного разрушения или полученный искусственным дроблением горных пород. Применяют его для подстилающих слоев дорожных одежд, приготовления асфальтовых и цементных бетонов и растворов.

№70 слайд
ЗАЩИТА ПРИРОДНЫХ КАМЕННЫХ
Содержание слайда: ЗАЩИТА ПРИРОДНЫХ КАМЕННЫХ МАТЕРИАЛОВ Основные причины разрушения каменных материалов в сооружениях: -растворяющее действие воды, усиливающееся растворенными в ней газами (SО2, CO2 и др.); -замерзание воды в порах и трещинах, сопровождающееся появлением в материале больших внутренних напряжений; -резкое изменение температур, вызывающее появление на поверхности материала микротрещин. Все мероприятия по защите каменных материалов от выветривания направлены на повышение их поверхностной плотности и на предохранение от воздействия влаги.

№71 слайд
ЛИТЕРАТУРА Белецкий Б.Ф.
Содержание слайда: ЛИТЕРАТУРА: Белецкий Б.Ф. Технология и механизация строительного производства: Учебник. 4-е изд., стер. - СПб.: Изд-во «Лань», 2011. – 752 стр. [http://e.lanbook.com/view/book/2032/] Рыбьев И.А. Строительное материаловедение. - М.: Высшая школа, 2002.- 704 с.

Скачать все slide презентации Вводная часть (классификация строительных материалов и их свойств, основные свойства строительных материалов) одним архивом: