Презентация Lemkes Algorithm: The Hammer in Your Math Toolbox? онлайн

На нашем сайте вы можете скачать и просмотреть онлайн доклад-презентацию на тему Lemkes Algorithm: The Hammer in Your Math Toolbox? абсолютно бесплатно. Урок-презентация на эту тему содержит всего 35 слайдов. Все материалы созданы в программе PowerPoint и имеют формат ppt или же pptx. Материалы и темы для презентаций взяты из открытых источников и загружены их авторами, за качество и достоверность информации в них администрация сайта не отвечает, все права принадлежат их создателям. Если вы нашли то, что искали, отблагодарите авторов - поделитесь ссылкой в социальных сетях, а наш сайт добавьте в закладки.
Презентации » Математика » Lemkes Algorithm: The Hammer in Your Math Toolbox?



Оцените!
Оцените презентацию от 1 до 5 баллов!
  • Тип файла:
    ppt / pptx (powerpoint)
  • Всего слайдов:
    35 слайдов
  • Для класса:
    1,2,3,4,5,6,7,8,9,10,11
  • Размер файла:
    326.50 kB
  • Просмотров:
    59
  • Скачиваний:
    0
  • Автор:
    неизвестен



Слайды и текст к этой презентации:

№1 слайд
Lemke s Algorithm The Hammer
Содержание слайда: Lemke’s Algorithm: The Hammer in Your Math Toolbox? Chris Hecker definition six, inc. checker@d6.com

№2 слайд
First, a Word About Hammers
Содержание слайда: First, a Word About Hammers requirements for this to be a good idea a way of transforming problems into nails (MLCPs) a hammer (Lemke’s algorithm) lots of advanced info + one hour = something has to give majority of lecture is motivating you to care about the hammer by showing you how useful nails can be make you hunger for more info post-lecture very little on how the hammer works in this hour

№3 слайд
Hammers cont. by definition,
Содержание слайда: Hammers (cont.) by definition, not the optimal way to solve problems, BUT computers are very fast these days often don’t care about optimality prepro, prototypes, tools, not a profile hotspot, etc. can always move to optimal solution after you verify it’s a problem you actually want to solve

№4 слайд
What are advanced game math
Содержание слайда: What are “advanced game math problems”? problems that are ammenable to mathematical modeling state the problem clearly state the desired solution clearly describe the problem with equations so a proposed solution’s quality is measurable figure out how to solve the equations why not hack it? I believe better modeling is the future of game technology development (consistency, not reality)

№5 слайд
Prerequisites linear algebra
Содержание слайда: Prerequisites linear algebra vector, matrix symbol manipulation at least calculus concepts what derivatives mean comfortable with math notation and concepts

№6 слайд
Overview of Lecture random
Содержание слайда: Overview of Lecture random assortment of example problems breifly mentioned 5 specific example problems in some depth including one that I ran into recently and how I solved it generalize the example models transform them all to MLCPs solve MLCPs with Lemke’s algorithm

№7 слайд
A Look Forward linear
Содержание слайда: A Look Forward linear equations Ax = b linear inequalities Ax >= b linear programming min cTx s.t. Ax >= b, etc.

№8 слайд
Applications to Games
Содержание слайда: Applications to Games graphics, physics, ai, even ui computational geometry visibility contact curve fitting constraints integration graph theory

№9 слайд
Applications to Games cont.
Содержание слайда: Applications to Games (cont.) don’t forget... The Elastohydrodynamic Lubrication Problem Solving Optimal Ownership Structures “The two parties establish a relationship in which they exchange feed ingredients, q, and manure, m.”

№10 слайд
Specific Examples a Ease
Содержание слайда: Specific Examples #1a: Ease Cubic Fitting warm up with an ease curve cubic x(t)=at3+bt2+ct+d x’(t)=3at2+2bt+c 4 unknowns a,b,c,d (DOFs) we get to set, we choose: x(0) = 0, x(1) = 1 x’(0) = 0, x’(1) = 0

№11 слайд
Specific Examples a Ease
Содержание слайда: Specific Examples #1a: Ease Cubic Fitting (cont.) x(t)=at3+bt2+ct+d, x’(t)=3at2+2bt+c x(0) = a03+b02+c0+d = d = 0 x(1) = a13+b12+c1+d = a+b+c+d = 1 x’(0) = 3a02+2b0+c = c = 0 x’(1) = 3a12+2b1+c = 3a + 2b + c = 0

№12 слайд
Specific Examples a Ease
Содержание слайда: Specific Examples #1a: Ease Cubic Fitting (cont.) d = 0, a+b+c+d = 1, c = 0, 3a + 2b + c = 0 a+b=1, 3a+2b=0 a=1-b => 3(1-b)+2b = 3-3b+2b = 3-b = 0 b=3, a=-2 x(t) = 3t2 - 2t3

№13 слайд
Specific Examples a Ease
Содержание слайда: Specific Examples #1a: Ease Cubic Fitting (cont.) or, x(0) = d = 0 x(1) = a + b + c + d = 1 x’(0) = c = 0 x’(1) = 3a + 2b + c = 0

№14 слайд
Specific Examples b Cubic
Содержание слайда: Specific Examples #1b: Cubic Spline Fitting same technique to fit higher order polynomials, but they “wiggle” piecewise cubic is better “natural cubic spline” xi(ti)=xi xi(ti+1)=xi+1 x’i(ti) - x’i-1(ti) = 0 x’’i(ti) - x’’i-1(ti) = 0 there is coupling between the splines, must solve simultaneously

№15 слайд
Specific Examples b Cubic
Содержание слайда: Specific Examples #1b: Cubic Spline Fitting (cont.)

№16 слайд
Specific Examples Minimum
Содержание слайда: Specific Examples #2: Minimum Cost Network Flow what is the cheapest flow route(s) from sources to sinks? model, want to minimize cost cij = cost of i to j arc bi = i’s supply/demand, sum(bi)=0 xij = quantity shipped on i to j arc x*k = sum(xik) = flow into k xk* = sum(xki) = flow out of k flow balance: x*k - xk* = -bk one-way streets: xij >= 0

№17 слайд
Specific Examples Minimum
Содержание слайда: Specific Examples #2: Minimum Cost Network Flow (cont.) min cost: minimize cTx the sum of the costs times the quantities shipped (cTx = c ·x) flow balance is coupling: matrix x*k - xk* = -bk

№18 слайд
Specific Examples Points in
Содержание слайда: Specific Examples #3: Points in Polys point in convex poly defined by planes n1 · x >= d1 n2 · x >= d2 n3 · x >= d3 farthest point in a direction in poly, c:

№19 слайд
Specific Examples Points in
Содержание слайда: Specific Examples #3: Points in Polys (cont.) closest point in two polys min (x2-x1)2 s.t. A1x1 >= b1 A2x2 >= b2 stack ‘em in blocks, Ax >= b

№20 слайд
Specific Examples Points in
Содержание слайда: Specific Examples #3: Points in Polys (cont.) how do we stack x1,x2 into single x given (x2-x1)2 = x22-2x2•x1+x12

№21 слайд
Specific Examples Points in
Содержание слайда: Specific Examples #3: Points in Polys (cont.) more points, more polys! min (x2-x1)2 + (x3-x2)2 + (x3-x1)2

№22 слайд
Specific Examples Contact
Содержание слайда: Specific Examples #4: Contact model like IK constraints a = Af + b a >= 0, no penetrating f >= 0, no pulling aifi = 0, complementarity (can’t push if leaving)

№23 слайд
Specific Examples Joint
Содержание слайда: Specific Examples #5: Joint Limits in CCD IK how to do child-child constraints in CCD? parent-child are easy, but need a way to couple two children to limit them relative to each other how to model this & handle all the cases? define dn= gn - an min (x1 - d1)2 + (x2 - d2)2 s.t. c1min <= a1+x1 - a2-x2 <= c1max parent-child are easy in this framework: c2min <= a1+x1 <= c2max another quadratic program: min xTQx s.t. Ax >= b

№24 слайд
What Unifies These Examples?
Содержание слайда: What Unifies These Examples? linear equations Ax = b linear inequalities Ax >= b linear programming min cTx s.t. Ax >= b, etc.

№25 слайд
QP is a Superset of Most
Содержание слайда: QP is a Superset of Most quadratic programming min ½xTQx + cTx s.t. Ax >= b Dx = e

№26 слайд
Karush-Kuhn-Tucker Optimality
Содержание слайда: Karush-Kuhn-Tucker Optimality Conditions get us to MLCP for QP form “Lagrangian” L(x,u,v) = ½ xTQx + cTx - uT(Ax - b) - vT(Dx - e) for optimality (if convex): L/ x = 0 Ax - b >= 0 Dx - e = 0 u >= 0 ui(Ax-b)i = 0 this is related to basic calculus min/max f’(x) = 0 solve

№27 слайд
Karush-Kuhn-Tucker Optimality
Содержание слайда: Karush-Kuhn-Tucker Optimality Conditions (cont.) L(x,u,v) = ½ xTQx + cTx - uT(Ax - b) - vT(Dx - e) y = L/ x = Qx + c - ATu - DTv = 0, x free w = Ax - b >= 0, u >= 0, wiui = 0 s = Dx - e = 0, v free

№28 слайд
This is an MLCP
Содержание слайда: This is an MLCP

№29 слайд
Modeling Summary a lot of
Содержание слайда: Modeling Summary a lot of interesting problems can be formulated as MLCPs model the problem mathematically transform it to an MLCP on paper or in code with wrappers but what about solving MLCPs?

№30 слайд
Solving MLCPs where I hope I
Содержание слайда: Solving MLCPs (where I hope I made you hungry enough for homework) Lemke’s Algorithm is only about 2x as complicated as Gaussian Elimination Lemke will solve LCPs, which some of these problems transform into then, doing an “advanced start” to handle the free variables gives you an MLCP solver, which is just a bit more code over plain Lemke’s Algorithm

№31 слайд
Playing Around With MLCPs
Содержание слайда: Playing Around With MLCPs PATH, a MCP solver (superset of MLCP!) really stoked professional solver free version for “small” problems matlab or C OMatrix (Matlab clone) free trial (omatrix.com) only LCPs, but Lemke source is in trial not a great version, but it’s really small (two pages of code) and quite useful for learning, with debug output good place to test out “advanced starts” my Lemke’s + advanced start code not great, but I’m happy to share it it’s in Objective Caml :)

№32 слайд
References for Lemke, etc.
Содержание слайда: References for Lemke, etc. free pdf book by Katta Murty on LCPs, etc. free pdf book by Vanderbei on LPs The LCP, Cottle, Pang, Stone Practical Optimization, Fletcher web has tons of material, papers, complete books, etc. email to authors relatively new math means authors are still alive, bonus!

№33 слайд
Содержание слайда:

№34 слайд
Specific Examples Constraints
Содержание слайда: Specific Examples #5: Constraints for IK compute “forces” to keep bones together a1 = A11 f1 + b1 a1 : relative acceleration at constraint f1 : force at constraint b1 : external forces converted to accelerations at constraints A11 : force/acceleration relation matrix

№35 слайд
Specific Examples Constraints
Содержание слайда: Specific Examples #5: Constraints for IK (cont.) multiple bodies gives coupling...

Скачать все slide презентации Lemkes Algorithm: The Hammer in Your Math Toolbox? одним архивом: