Презентация На тему Кратные интегралы онлайн

На нашем сайте вы можете скачать и просмотреть онлайн доклад-презентацию на тему На тему Кратные интегралы абсолютно бесплатно. Урок-презентация на эту тему содержит всего 13 слайдов. Все материалы созданы в программе PowerPoint и имеют формат ppt или же pptx. Материалы и темы для презентаций взяты из открытых источников и загружены их авторами, за качество и достоверность информации в них администрация сайта не отвечает, все права принадлежат их создателям. Если вы нашли то, что искали, отблагодарите авторов - поделитесь ссылкой в социальных сетях, а наш сайт добавьте в закладки.
Презентации » Математика » На тему Кратные интегралы



Оцените!
Оцените презентацию от 1 до 5 баллов!
  • Тип файла:
    ppt / pptx (powerpoint)
  • Всего слайдов:
    13 слайдов
  • Для класса:
    1,2,3,4,5,6,7,8,9,10,11
  • Размер файла:
    290.50 kB
  • Просмотров:
    79
  • Скачиваний:
    0
  • Автор:
    неизвестен



Слайды и текст к этой презентации:

№1 слайд
Кратные интегралы Как
Содержание слайда: Кратные интегралы Как известно, интегрирование является процессом суммирования. Однако суммирование может производится неоднократно, что приводит нас к понятию кратных интегралов. Рассмотрение этого вопроса начнем с рассмотрения двойных интегралов.

№2 слайд
Двойные интегралы. Рассмотрим
Содержание слайда: Двойные интегралы. Рассмотрим на плоскости некоторую замкнутую кривую, уравнение которой f(x, y) = 0. Совокупность всех точек, лежащих внутри кривой и на самой кривой назовем замкнутой областью . Если выбрать точки области без учета точек, лежащих на кривой, область будет называется незамкнутой область . С геометрической точки зрения  - площадь фигуры, ограниченной контуром.

№3 слайд
Разобьем область на n
Содержание слайда: Разобьем область  на n частичных областей сеткой прямых, отстоящих друг от друга по оси х на расстояние , а по оси у – на . Вообще говоря, такой порядок разбиения необязателен, возможно разбиение области на частичные участки произвольной формы и размера. Получаем, что площадь S делится на элементарные прямоугольники, площади которых равны В каждой частичной области возьмем произвольную точку и составим интегральную сумму где f – функция непрерывная и однозначная для всех точек области . Если бесконечно увеличивать количество частичных областей i, тогда, очевидно, площадь каждого частичного участка Si стремится к нулю.

№4 слайд
Определение Если при
Содержание слайда: Определение Если при стремлении к нулю шага разбиения области  интегральные суммы имеют конечный предел, то этот предел называется двойным интегралом от функции f(x, y) по области . учетом того, что получаем: В приведенной выше записи имеются два знака , т.к. суммирование производится по двум переменным х и у. Т.к. деление области интегрирования произвольно, также произволен и выбор точек , то, считая все площади одинаковыми, получаем формулу:

№5 слайд
Условия существования
Содержание слайда: Условия существования двойного интеграла Сформулируем достаточные условия существования двойного интеграла Теорема. Если функция f(x, y) непрерывна в замкнутой области , то двойной интеграл существует.

№6 слайд
Теорема Если функция f x, y
Содержание слайда: Теорема Если функция f(x, y) ограничена в замкнутой области  и непрерывна в ней всюду, кроме конечного числа кусочно – гладких линий, то двойной интеграл существует.

№7 слайд
Свойства двойного интеграла.
Содержание слайда: Свойства двойного интеграла. 1) 2) 3) Если  = 1 + 2, то 4) Теорема о среднем. Двойной интеграл от функции f(x, y) равен произведению значения этой функции в некоторой точке области интегрирования на площадь области интегрирования. 5) Если f(x, y)  0 в области , то 6) Если f1(x, y)  f2(x, y), то 7)

№8 слайд
Вычисление двойного интеграла
Содержание слайда: Вычисление двойного интеграла Теорема Если функция f(x, y) непрерывна в замкнутой области , ограниченной линиями х = a, x = b, (a < b), y = (x), y = (x), где  и  - непрерывные функции и   , тогда

№9 слайд
Теорема. Если функция f x, y
Содержание слайда: Теорема. Если функция f(x, y) непрерывна в замкнутой области , ограниченной линиями y = c, y = d (c < d), x = (y), x = (y) ((y)  (y)), то

№10 слайд
Замена переменных в двойном
Содержание слайда: Замена переменных в двойном интеграле Расмотрим двойной интеграл вида , где переменная изменяется в пределах от a до b, а переменная – от до Положим Тогда

№11 слайд
т.к. при первом
Содержание слайда: т.к. при первом интегрировании переменная принимается за постоянную, то т.к. при первом интегрировании переменная принимается за постоянную, то подставляя это выражение в записанное выше соотношение для , получаем:

№12 слайд
Выражение называется
Содержание слайда: Выражение называется определителем Якоби или Якобианом функций и Выражение называется определителем Якоби или Якобианом функций и (Якоби Карл Густав Якоб – (1804-1851) – немецкий математик) Тогда Т.к. при первом интегрировании приведенное выше выражение для принимает вид ( при первом интегрировании полагаем ), то при изменении порядка интегрирования, получаем соотношение:

№13 слайд
Двойной интеграл в полярных
Содержание слайда: Двойной интеграл в полярных координатах. Воспользуемся формулой замены переменных: При этом известно, что В этом случае Якобиан имеет вид: Тогда Здесь  - новая область значений,

Скачать все slide презентации На тему Кратные интегралы одним архивом: