Презентация Доклад по микро- и оптоэлектронике. Студентки гр. 21305 Васильевой Е. А. онлайн

На нашем сайте вы можете скачать и просмотреть онлайн доклад-презентацию на тему Доклад по микро- и оптоэлектронике. Студентки гр. 21305 Васильевой Е. А. абсолютно бесплатно. Урок-презентация на эту тему содержит всего 16 слайдов. Все материалы созданы в программе PowerPoint и имеют формат ppt или же pptx. Материалы и темы для презентаций взяты из открытых источников и загружены их авторами, за качество и достоверность информации в них администрация сайта не отвечает, все права принадлежат их создателям. Если вы нашли то, что искали, отблагодарите авторов - поделитесь ссылкой в социальных сетях, а наш сайт добавьте в закладки.
Презентации » Физика » Доклад по микро- и оптоэлектронике. Студентки гр. 21305 Васильевой Е. А.



Оцените!
Оцените презентацию от 1 до 5 баллов!
  • Тип файла:
    ppt / pptx (powerpoint)
  • Всего слайдов:
    16 слайдов
  • Для класса:
    1,2,3,4,5,6,7,8,9,10,11
  • Размер файла:
    1.57 MB
  • Просмотров:
    47
  • Скачиваний:
    0
  • Автор:
    неизвестен



Слайды и текст к этой презентации:

№1 слайд
Доклад по микро- и
Содержание слайда: Доклад по микро- и оптоэлектронике. Студентки гр.21305 Васильевой Е.А.

№2 слайд
Туннельные диоды. Обращенные
Содержание слайда: Туннельные диоды. Обращенные диоды. Переходные процессы.

№3 слайд
Туннельный диод. Первая
Содержание слайда: Туннельный диод. Первая работа, подтверждающая реальность создания туннельных приборов была посвящена туннельному диоду, называемому также диодом Есаки, и опубликована Л.Есаки в 1958 году. Есаки в процессе изучения внутренней полевой эмиссии в вырожденном германиевом p-n переходе обнаружил "аномальную" ВАХ: дифференциальное сопротивление на одном из участков характеристики было отрицательным. Этот эффект он объяснил с помощью концепции квантово-механического туннелирования и при этом получил приемлемое согласие между теоретическими и экспериментальными результатами.

№4 слайд
Туннельный диод. Туннельным
Содержание слайда: Туннельный диод. Туннельным диодом называют полупроводниковый диод на основе p+-n+ перехода с сильнолегированными областями, на прямом участке вольт-амперной характеристики которого наблюдается n-образная зависимость тока от напряжения. Как известно, в полупроводниках с высокой концентрацией примесей образуются примесные энергетические зоны. В n-полупроводниках такая зона перекрывается с зоной проводимости, а в p-полупроводниках – с валентной зоной. Вследствие этого уровень Ферми в n-полупроводниках с высокой концентрацией примесей лежит выше уровня Ec, а в р-полупроводниках ниже уровня Ev. В результате этого в пределах энергетического интервала E=Ev-Ec любому энергетическому уровню в зоне проводимости n-полупроводника может соответствовать такой же энергетический уровень за потенциальным барьером, т.е. в валентной зоне p-полупроводника.

№5 слайд
Туннельный диод. Таким
Содержание слайда: Туннельный диод. Таким образом, частицы в n и p-полупроводниках с энергетическими состояниями в пределах интервалаE разделены узким потенциальным барьером. В валентной зоне p-полупроводника и в зоне проводимости n-полупроводника часть энергетических состояний в интервале E свободна. Следовательно, через такой узкий потенциальный барьер, по обе стороны которого имеются незанятые энергетические уровни, возможно туннельное движение частиц. При приближении к барьеру частицы испытывают отражение и возвращаются в большинстве случаев обратно, но все же есть вероятность обнаружения частицы за барьером, в результате туннельного перехода отлична от нуля и плотность туннельного тока j t<>0. Рассчитаем, чему равна геометрическая ширина вырожденного p-n перехода. Будем считать, что при этом сохраняется несимметричность p-n перехода (p+ – более сильнолегированная область). Тогда ширина p+-n+ перехода мала: Дебройлевскую длину волны электрона оценим из простых соотношений:

№6 слайд
Туннельный диод.
Содержание слайда: Туннельный диод. Геометрическая ширина p+-n+ перехода оказывается сравнима с дебройлевской длиной волны электрона. В этом случае в вырожденном p+-n+ переходе можно ожидать проявления квантово-механических эффектов, одним из которых является туннелирование через потенциальный барьер. При узком барьере вероятность туннельного просачивания через барьер отлична от нуля!!!

№7 слайд
Туннельный диод. Токи в
Содержание слайда: Туннельный диод. Токи в туннельном диоде. В состоянии равновесия суммарный ток через переход равен нулю.   При подаче напряжения на переход электроны могут туннелировать из валентной зоны в зону проводимости или наоборот. Для протекания туннельного тока необходимо выполнение следующих условий: 1)энергетические состояния на той стороне перехода, откуда туннелируют электроны, должны быть заполнены; 2) на другой стороне перехода энергетические состояния с той же энергией должны быть пустыми; 3)высота и ширина потенциального барьера должны быть достаточно малыми, чтобы существовала конечная вероятность туннелирования; 4) должен сохраняться квазиимпульс. Туннельный диод.swf

№8 слайд
Туннельный диод. В качестве
Содержание слайда: Туннельный диод. В качестве параметров используются напряжения и токи, характеризующие особые точки ВАХ. Пиковый ток соответствует максимуму ВАХ в области туннельнго эффекта. Напряжение Uп соответствует току Iп. Ток впадины Iв и Uв характеризуют ВАХ в области минимума тока. Напряжение раствора Upp соответствует значению тока Iп на диффузионной ветви характеристики. Падающий участок зависимости I=f(U) характеризуется отрицательным дифференциальным сопротивлением rД= -dU/dI, величину которого с некоторой погрешностью можно определить по формуле

№9 слайд
Обращенные диоды. Рассмотрим
Содержание слайда: Обращенные диоды. Рассмотрим случай, когда энергия Ферми в электронном и дырочном полупроводниках совпадает или находится на расстоянии ± kT/q от дна зоны проводимости или вершины валентной зоны. В этом случае вольт-амперные характеристики такого диода при обратном смещении будут точно такие же, как и у туннельного диода, то есть при росте обратного напряжения будет быстрый рост обратного тока. Что касается тока при прямом смещении, то туннельная компонента ВАХ будет полностью отсутствовать в связи с тем, что нет полностью заполненных состояний в зоне проводимости. Поэтому при прямом смещении в таких диодах до напряжений, больше или равных половине ширины запрещенной зоны, ток будет отсутствовать. С точки зрения выпрямительного диода вольт-амперная характеристика такого диода будет инверсной, то есть будет высокая проводимость при обратном смещении и малая при прямом. В связи с этим такого вида туннельные диоды получили название обращенных диодов. Таким образом, обращенный диод – это туннельный диод без участка с отрицательным дифференциальным сопротивлением. Высокая нелинейность вольт-амперной характеристики при малых напряжениях вблизи нуля (порядка микровольт) позволяет использовать этот диод для детектирования слабых сигналов в СВЧ-диапазоне.

№10 слайд
Переходные процессы. При
Содержание слайда: Переходные процессы. При быстрых изменениях напряжения на полупроводниковом диоде на основе обычного p-n перехода значение тока через диод, соответствующее статической вольт-амперной характеристике, устанавливается не сразу. Процесс установления тока при таких переключениях обычно называют переходным процессом. Переходные процессы в полупроводниковых диодах связаны с накоплением неосновных носителей в базе диода при его прямом включении и их рассасывании в базе при быстром изменении полярности напряжения на диоде. Так как электрическое поле в базе обычного диода отсутствует, то движение неосновных носителей в базе определяется законами диффузии и происходит относительно медленно. В результате кинетика накопления носителей в базе и их рассасывание влияют на динамические свойства диодов в режиме переключения. Рассмотрим изменения тока I при переключении диода с прямого напряжения U на обратное напряжение.

№11 слайд
Переходные процессы. В
Содержание слайда: Переходные процессы. В стационарном случае величина тока в диоде описывается уравнением После завершения переходных процессов величина тока в диоде будет равна J0. Рассмотрим кинетику переходного процесса, то есть изменение тока p-n перехода при переключении с прямого напряжения на обратное. При прямом смещении диода на основе несимметричного p-n перехода происходит инжекция неравновесных дырок в базу диода. Изменение во времени и пространстве неравновесных инжектированных дырок в базе описывается. уравнением непрерывности:

№12 слайд
Переходные процессы. В момент
Содержание слайда: Переходные процессы. В момент времени t = 0 распределение инжектированных носителей в базе определяется из диффузионного уравнения и имеет вид: Из общих положений ясно, что в момент переключения напряжения в диоде с прямого на обратное величина обратного тока будет существенно больше, чем тепловой ток диода. Это произойдет потому, что обратный ток диода обусловлен дрейфовой компонентой тока, а ее величина в свою очередь определяется концентрацией неосновных носителей. Эта концентрация значительно увеличена в базе диода за счет инжекции дырок из эмиттера и описывается в начальный момент этим же уравнением.

№13 слайд
Переходные процессы. С
Содержание слайда: Переходные процессы. С течением времени концентрация неравновесных носителей будет убывать, следовательно, будет убывать и обратный ток. За время t2, называемое временем восстановления обратного сопротивления, или временем рассасывания, обратный ток придет к значению, равному тепловому току. Для описания кинетики этого процесса запишем граничные и начальные условия для уравнения непрерывности в следующем виде. В момент времени t = 0 справедливо уравнение распределения инжектированных носителей в базе. При установлении стационарного состояния в момент времени стационарное распределение неравновесных носителей в базе описывается соотношением:

№14 слайд
Переходные процессы. Обратный
Содержание слайда: Переходные процессы. Обратный ток обусловлен только диффузией дырок к границе области пространственного заряда p-n перехода: Процедура нахождения кинетики обратного тока следующая. Учитывая граничные условия, решается уравнение непрерывности и находится зависимость концентрации неравновесных носителей в базе p(x,t) от времени и координаты. На рисунке приведены координатные зависимости концентрации p(x,t) в различные моменты времени.

№15 слайд
Переходные процессы.
Содержание слайда: Переходные процессы. Подставляя динамическую концентрацию p(x,t), находим кинетическую зависимость обратного тока J(t). Зависимость обратного тока J(t) имеет следующий вид:

№16 слайд
Переходные процессы. Для
Содержание слайда: Переходные процессы. Для импульсных диодов время среза τср и время восстановления τв обратного сопротивления диода являются важными параметрами. Для уменьшения их значения существуют несколько способов. Во-первых, можно уменьшать время жизни неравновесных носителей в базе диода за счет введения глубоких рекомбинационных центров в квазинейтральном объеме базы. Во-вторых, можно делать базу диода тонкой для того, чтобы неравновесные носители рекомбинировали на тыльной стороне базы.perpr_pn.swf

Скачать все slide презентации Доклад по микро- и оптоэлектронике. Студентки гр. 21305 Васильевой Е. А. одним архивом:
Похожие презентации