Презентация Молекулярная физика. Термодинамика онлайн

На нашем сайте вы можете скачать и просмотреть онлайн доклад-презентацию на тему Молекулярная физика. Термодинамика абсолютно бесплатно. Урок-презентация на эту тему содержит всего 41 слайд. Все материалы созданы в программе PowerPoint и имеют формат ppt или же pptx. Материалы и темы для презентаций взяты из открытых источников и загружены их авторами, за качество и достоверность информации в них администрация сайта не отвечает, все права принадлежат их создателям. Если вы нашли то, что искали, отблагодарите авторов - поделитесь ссылкой в социальных сетях, а наш сайт добавьте в закладки.
Презентации » Физика » Молекулярная физика. Термодинамика



Оцените!
Оцените презентацию от 1 до 5 баллов!
  • Тип файла:
    ppt / pptx (powerpoint)
  • Всего слайдов:
    41 слайд
  • Для класса:
    1,2,3,4,5,6,7,8,9,10,11
  • Размер файла:
    504.00 kB
  • Просмотров:
    85
  • Скачиваний:
    0
  • Автор:
    неизвестен



Слайды и текст к этой презентации:

№1 слайд
Содержание слайда:

№2 слайд
. Изменения энтропии при
Содержание слайда: 4. Изменения энтропии при обратимых и необратимых процессах Итак, энтропия – отношение полученной или отданной системой теплоты в обратимом процессе, к температуре, при которой происходит эта передача. Энтропия – величина аддитивная, т.е. она равна сумме энтропий всех тел входящих в систему:

№3 слайд
Обратимый цикл Карно Мы
Содержание слайда: Обратимый цикл Карно Мы знаем, что, в тепловой машине, работающей по принципу Карно, имеются три тела: холодильник, нагреватель, рабочее тело (газ). Изменение энтропии газа так как газ возвращается в исходное состояние.

№4 слайд
Изменение энтропии
Содержание слайда: Изменение энтропии нагревателя: (4.1) Для холодильника: (4.2) А т.к.

№5 слайд
то , т.е. или . т.е. S
Содержание слайда: то , т.е. или (4.3) т.е. S – константа. Это выражение называют равенство Клаузиуса.

№6 слайд
Необратимый цикл Мы знаем,
Содержание слайда: Необратимый цикл Мы знаем, что т.е., (4.4) Отсюда тогда

№7 слайд
Таким образом или . Это
Содержание слайда: Таким образом или (4.5) Это неравенство Клаузиуса. При любом необратимом процессе в замкнутой системе энтропия возрастает (dS > 0).

№8 слайд
Тогда для замкнутой системы .
Содержание слайда: Тогда для замкнутой системы (4.7) – математическая запись второго начала термодинамики.

№9 слайд
. Второе начало термодинамики
Содержание слайда: 5. Второе начало термодинамики Термодинамика, это наука о тепловых процессах, о превращении тепловой энергии. Для описания термодинамических процессов первого начала термодинамики недостаточно. Выражая общий закон сохранения и превращения энергии, первое начало не позволяет определить направление протекания процессов.

№10 слайд
Исторически второе начало
Содержание слайда: Исторически второе начало термодинамики возникло из анализа работы тепловых двигателей. Рассмотрим схему теплового двигателя. От термостата с более высокой температурой Т1, называемого нагревателем за цикл отнимается количество теплоты Q1, а термостату с более низкой температурой Т2, называемому холодильником за цикл передается количество теплоты Q2 и совершается работа

№11 слайд
Содержание слайда:

№12 слайд
Чтобы термический коэффициент
Содержание слайда: Чтобы термический коэффициент полезного действия теплового двигателя был , должно быть выполнено условие , т.е. тепловой двигатель должен иметь один источник теплоты, а это невозможно. Н. Карно в 1824 г. доказал, что для работы теплового двигателя необходимо не менее двух источников теплоты с различными температурами. Невозможность создания вечного двигателя второго рода подтверждается вторым началом термодинамики:

№13 слайд
. Невозможен процесс,
Содержание слайда: 1. Невозможен процесс, единственным результатом которого является превращение всей теплоты, полученной от нагревателя в эквивалентную ей работу (формулировка Кельвина) 2. Невозможен вечный двигатель второго рода (формулировка Томпсона-Планка). 3. Невозможен процесс, единственным результатом которого является передача энергии от холодного тела к горячему (формулировка Клаузиуса).

№14 слайд
Математической формулировкой
Содержание слайда: Математической формулировкой второго начала является выражение Энтропия замкнутой системы при любых происходивших в ней процессах не может убывать (или увеличивается или остается неизменной).

№15 слайд
При обратимомном процессе .
Содержание слайда: При обратимомном процессе (5.1) При необратимом процессе, как доказал Клаузиус (5.2)  изменение энтропии больше приведенной теплоты. Тогда тогда эти выражения можно объединить: (5.3)

№16 слайд
Первое и второе начала
Содержание слайда: Первое и второе начала термодинамики в объединенной форме имеют вид: (5.4)

№17 слайд
. Свободная и связанная
Содержание слайда: 6. Свободная и связанная энергии Как следует из первого и второго начала термодинамики в объединенной форме в обратимом процессе: Это равенство можно переписать в виде .

№18 слайд
Обозначим, , где F разность
Содержание слайда: Обозначим, , где F – разность двух функций состояний, поэтому сама является также функцией состояния. Ее назвали свободной энергией. Тогда (6.1) Если тело совершает обратимый изотермический процесс, то

№19 слайд
следовательно свободная
Содержание слайда: следовательно свободная энергия есть та работа, которую могло бы совершить тело в обратимом изотермическом процессе или, свободная энергия – есть максимальная возможная работа, которую может совершить система, обладая каким-то запасом внутренней энергии.

№20 слайд
Связанная энергия та часть
Содержание слайда: Связанная энергия – та часть внутренней энергии, которая не может быть превращена в работу – это обесцененная часть внутренней энергии. При одной и той же температуре, связанная энергия тем больше, чем больше энтропия. Таким образом, энтропия системы есть мера обесцененности ее энергии (т.е. мера той энергии, которая не может быть превращена в работу).

№21 слайд
В термодинамике есть еще
Содержание слайда: В термодинамике есть еще понятие – энергетическая потеря в изолированной системе (6.3)

№22 слайд
При любом необратимом
Содержание слайда: При любом необратимом процессе энтропия увеличивается до того, пока не прекратятся какие-либо процессы, т.е. пока не станет F = 0. Это произойдет, при достижении замкнутой системы равновесного состояния, т.е. когда все параметры состояния системы (Р, Т) во всех точках системы станут одинаковыми. Вывести систему из этого равновесного состояния можно только затратив энергию из вне. На основании этих рассуждений Клаузиус в 1867 г. выдвинул гипотезу о тепловой смерти Вселенной.

№23 слайд
. Статистический смысл
Содержание слайда: 7. Статистический смысл энтропии Посмотрим на энтропию с другой стороны.

№24 слайд
Макросостояние это состояние
Содержание слайда: Макросостояние – это состояние вещества, характеризуемое его термодинамическими параметрами. Состояние же системы, характеризуемое состоянием каждой входящей в систему молекулы, называют микросостоянием. Так как молекулы движутся хаотически, то имеется много микросостояний, соответствующих одному макросостоянию. Обозначим W  число микросостояний соответствующее данному макросостоянию (как правило W >> 1).

№25 слайд
Термодинамической
Содержание слайда: Термодинамической вероятностью или статистическим весом макросостояния W  называется число микросостояний, осуществляющих данное макросостояние (или число перестановок одноименных элементов, при которых сохраняется данное макросостояние). Термодинамическая вероятность W  максимальна, когда система находится в равновесном состоянии.

№26 слайд
В состоянии равновесия в
Содержание слайда: В состоянии равновесия в термодинамике и вероятность максимальна и энтропия максимальна. Из этого можно сделать вывод, что между ними существует связь. Но!!! Энтропия S – аддитивная величина: , т.е. она равна сумме энтропий тел, входящих в систему.

№27 слайд
А вероятность сложного
Содержание слайда: А вероятность сложного события, есть произведение вероятностей где W1 – первое состояние; W2 – второе состояние. Аддитивной величиной является логарифм W: термодинамическая вероятность или статистический вес.

№28 слайд
Больцман предложил, что . где
Содержание слайда: Больцман предложил, что (7.1) где k – коэффициент Больцмана. С этой точки зрения энтропия выступает, как мера беспорядочности, хаотичности состояния. Например, в ящике черные и белые шары. Они порознь, есть порядок и W невелика. После встряхивания – шары перемещаются и W – увеличивается и энтропия. И сколько бы не встряхивать потом ящик, никогда черные шары не соберутся у одной стенки, а белые у другой, хотя эта вероятность не равна нулю.

№29 слайд
Связь между S и W позволяет
Содержание слайда: Связь между S и W позволяет несколько иначе сформулировать второе начало термодинамики: наиболее вероятным изменением энтропии является ее возрастание.

№30 слайд
Энтропия вероятностная
Содержание слайда: Энтропия – вероятностная статистическая величина. Утверждение о возрастании энтропии потеряло свою категоричность. Её увеличение вероятно, но не исключаются флуктуации. До этих рассуждений Клаузиус в 1867 г. выдвинул гипотезу о тепловой смерти Вселенной (о ней сказано ранее). Л. Больцман один из первых опроверг эту гипотезу и показал, что закон возрастания энтропии – статистический закон, т.е. возможны отклонения.

№31 слайд
Российские физики Я.Б.
Содержание слайда: Российские физики Я.Б. Зельдович и И.Д. Новиков, так же опровергли эту теорию, и показали, что Р. Клаузиус не учел, что Вселенная не стационарна и в будущем не перейдет к одному состоянию, так как она эволюционирует, остается не статичной. Энтропия системы – максимальна, при достижении замкнутой системой равновесного состояния.

№32 слайд
. Третье начало термодинамики
Содержание слайда: 8. Третье начало термодинамики Недостатки первого и второго начал термодинамики в том, что они не позволяют определить значение энтропии при абсолютном нуле Т = 0º К. На основании обобщения экспериментальных исследований свойств различных веществ при сверхнизких температурах был установлен закон, устранивший указанный недостаток. Сформулировал его в 1906 г. Нернст и называется он третьим началом термодинамики, или теоремой Нернста.

№33 слайд
Нернст Вальтер Фридрих Герман
Содержание слайда: Нернст Вальтер Фридрих Герман (1864 – 1941) – немецкий физик и физико- химик, один из основоположников физической химии. Работы в области термодинамики, физики низких температур, физической химии. Высказал утверждение, что энтропия химически однородного твердого или жидкого тела при абсолютном нуле равна нулю (теорема Нернста). Предсказал эффект «вырождения» газа.

№34 слайд
Согласно Нернсту, изменение
Содержание слайда: Согласно Нернсту, изменение энтропии S стремится к нулю при любых обратимых изотермических процессах, совершаемых между двумя равновесными состояниями при температурах, приближающихся к абсолютному нулю (S → 0 при Т → 0). Нернст сформулировал теорему для изолированных систем, а затем М. Планк распространил ее на случай любых систем, находящихся в термодинамическом равновесии.

№35 слайд
Как первое и второе начала
Содержание слайда: Как первое и второе начала термодинамики, теорема Нернста может рассматриваться как результат обобщения опытных фактов, поэтому ее часто называют третьим началом термодинамики: энтропия любой равновесной системы при абсолютном нуле температуры может быть равна нулю.

№36 слайд
Отсюда следует, что при T
Содержание слайда: Отсюда следует, что при T  0 интеграл сходится на нижнем пределе, т.е. имеет конечное значение S(0) = const или S(0) = 0, причем равенство нулю рассматривается как наиболее вероятное. А нулевое значение энтропии (меры беспорядка) соответствует отсутствию теплового движения при абсолютном нуле.

№37 слайд
При T , внутренняя энергия и
Содержание слайда: При T = 0, внутренняя энергия и тепловая функция системы прекращают зависеть от температуры, кроме того, используя метод термодинамических функций, можно показать, что при T = 0, от температуры независит коэффициент объемного расширения, термический коэффициент давления и другие параметры системы.

№38 слайд
Согласно классическим
Содержание слайда: Согласно классическим представлениям при абсолютном нуле, возможно непрерывное множество микросостояний системы. Объяснение теоремы Нернста можно дать только на основании квантово-механических представлений.

№39 слайд
Третье начало термодинамики
Содержание слайда: Третье начало термодинамики иногда формулируют следующим образом: при абсолютном нуле температуры любые изменения термодинамической системы происходят без изменения энтропии: т.е. или

№40 слайд
Принцип Нернста бал развит
Содержание слайда: Принцип Нернста бал развит Планком, предположившим, что при абсолютном нуле температуры энергия системы минимальна (но не равна нулю). Тогда можно считать, что при абсолютном нуле система имеет одно квантовое состояние: значит термодинамическая вероятность W при Т = 0º должна быть равна единице, что недостижимо (принцип недостижимости абсолютного нуля температуры)

№41 слайд
Следствием Третьего начала
Содержание слайда: Следствием Третьего начала является то что, невозможно охладить тело до абсолютного нуля (принцип недостижимости абсолютного нуля температуры). Иначе был бы возможен вечный двигатель II рода (какой это двигатель?)

Скачать все slide презентации Молекулярная физика. Термодинамика одним архивом: