Презентация Углеводы. Классификация углеводов. Явление мутаротации. (Лекция 4) онлайн

На нашем сайте вы можете скачать и просмотреть онлайн доклад-презентацию на тему Углеводы. Классификация углеводов. Явление мутаротации. (Лекция 4) абсолютно бесплатно. Урок-презентация на эту тему содержит всего 23 слайда. Все материалы созданы в программе PowerPoint и имеют формат ppt или же pptx. Материалы и темы для презентаций взяты из открытых источников и загружены их авторами, за качество и достоверность информации в них администрация сайта не отвечает, все права принадлежат их создателям. Если вы нашли то, что искали, отблагодарите авторов - поделитесь ссылкой в социальных сетях, а наш сайт добавьте в закладки.
Презентации » Химия » Углеводы. Классификация углеводов. Явление мутаротации. (Лекция 4)



Оцените!
Оцените презентацию от 1 до 5 баллов!
  • Тип файла:
    ppt / pptx (powerpoint)
  • Всего слайдов:
    23 слайда
  • Для класса:
    1,2,3,4,5,6,7,8,9,10,11
  • Размер файла:
    3.96 MB
  • Просмотров:
    62
  • Скачиваний:
    0
  • Автор:
    неизвестен



Слайды и текст к этой презентации:

№1 слайд
Содержание слайда:

№2 слайд
Функции углеводов структурная
Содержание слайда: Функции углеводов – структурная и опорная функции (целлюлоза - основной структурный компонент клеточных стенок растений , хитин - грибов, хитин обеспечивает жёсткость экзоскелета членистоногих); – защитная роль (у растений: шипы, колючки и др., состоящие из клеточных стенок мёртвых клеток); – энергетическая функция (при окислении 1 г углеводов выделяется 4,1 ккал энергии); – пластическая функция (входят в состав сложных молекул, например, рибоза и дезоксирибоза участвуют в построении АТФ, ДНК и РНК); – запасающая функция (запасные питательные вещества: гликоген у животных, крахмал и инулин – у растений); – осмотическая функция (участвуют в регуляции осмотического давления в организме, в т.ч. в крови); – рецепторная функция (входят в состав воспринимающей части многих клеточных рецепторов).

№3 слайд
Классификация углеводов
Содержание слайда: Классификация углеводов

№4 слайд
Строение альдоз
Содержание слайда: Строение альдоз

№5 слайд
Строение кетоз
Содержание слайда: Строение кетоз

№6 слайд
Стереоизомерия моноз
Содержание слайда: Стереоизомерия моноз Стереоизомеры углеводов, отличающиеся конфигурацией одного или нескольких асимметрических атомов углерода, называются диастереомерами. Эпимеры и энантиомеры – частные случаи диастереомеров. Диастереомеры, относящиеся друг к другу как предмет к своему зеркальному изображению, называются энантиомерами. Энантиомеры имеют одинаковые физические и химические свойства, различаются по оптическим свойствам и биологической активности. Если диастереомеры различаются конфигурацией только одного асимметрического атома углерода, то их называют эпимерами. Если различается конфигурация второго атома углерода, то такие диастереомеры называют просто эпимерами; если других атомов углерода, то к названию добавляется номер этого атома.

№7 слайд
Образование циклических форм
Содержание слайда: Образование циклических форм моноз

№8 слайд
Явление мутаротации Изменение
Содержание слайда: Явление мутаротации Изменение угла наклона плоскости поляризации плоскополяризованного света в свежеприготовленных растворов моноз называется мутаротацией. Она связана с переходом одной формы сахара в другие до наступления таутомерного равновесия.

№9 слайд
Химические свойства моноз
Содержание слайда: Химические свойства моноз Углеводы являются гетерофункциональными соединениями и могут существовать как в открытой, так и в циклической форме. Все химические реакции, в которые они вступают, можно разделить на три группы: - реакции с участием карбонильной группы (восстановление, окисление); - реакции с участием гидроксильных групп (образование простых и сложных эфиров); - реакции с участием полуацетального гидроксила (получение гликозидов).

№10 слайд
Восстановление моноз При
Содержание слайда: Восстановление моноз При восстановлении карбонильной группы моноз образуются полиолы (многоатомные спирты). Это кристаллические вещества, легко растворимые в воде и часто обладающие сладким вкусом, поэтому некоторые используются в качестве заменителей сахара (ксилит, сорбит). Кетозы (в отличие от альдоз) дают 2 полиола, т.к. атом углерода кетогруппы при восстановлении превращается в асимметрический, что приводит к существованию ещё одного изомерного полиола по второму атому углерода. Восстановление глюкозы в сорбит является одной из стадий промышленного синтеза аскорбиновой кислоты.

№11 слайд
Окисление моноз Альдозы
Содержание слайда: Окисление моноз Альдозы окисляются легче, чем кетозы При взаимодействии со слабыми окислителями (гидроксид меди (II), аммиачный раствор гидроксида еребра) альдегидная группа окисляется до карбоксильной, Получаются –оновые кислоты (глюконовая, манноновая и т.д.) Взаимодействие альдоз с более сильными окислителями (разбавленная азотная кислота) приводит к окислению альдегидной и первичной спиртовой групп. Образуются дикарбоновые –аровые кислоты. При участии ферментов окисление может протекать по первичной спиртовой группе, не затрагивая альдегидную. В этом случае получаются –уроновые кислоты.

№12 слайд
Окисление кетоз происходит
Содержание слайда: Окисление кетоз происходит под действием сильных окислителей и сопровождается деструк­цией углеродного скелета. Разрыв связи может происходить двумя способами: между первым и вторым, а также вторым и третьим атомами углерода. При этом все концевые атомы углерода окисляются с образованием карбоксильных групп. Окисление кетоз происходит под действием сильных окислителей и сопровождается деструк­цией углеродного скелета. Разрыв связи может происходить двумя способами: между первым и вторым, а также вторым и третьим атомами углерода. При этом все концевые атомы углерода окисляются с образованием карбоксильных групп. При окислении D-фруктозы образуется четыре продукта реакции. При разрыве связи между первым и вторым атомами углерода образуются муравьиная и D-арабинаровая кислоты. При разрыве связи между вторым и третьим атомами углерода образуются щавелевая и мезовинная кислоты: Тот факт, что не только альдозы, но и кетозы дают реакцию «серебряного зеркала» (со слабым окислителем – аммиачным раствором гидроксида серебра) объясняется тем, что реакция идёт в щелочной среде, где возможны таутомерные превращения кетоз в эпимерные им альдозы. Образующиеся альдозы и выступают в качестве сильного восстановителя.

№13 слайд
Образование простых эфиров
Содержание слайда: Образование простых эфиров Простые эфиры получают при взаимодействии гидроксильных групп моноз с алкилгалогенидами. Одновременно в реакцию вступают как полуацетальная, так и спиртовые гидроксигруппы. Полуацетальная группа –ОН более реакционноспособна, поэтому образование простого эфира по этой группе протекает быстрее. Образующиеся при этом моноэфиры называют гликозидами (пиранозидами и фуранозидами). Простые эфиры, образованные спиртовыми гидроксильными группами не гидролизуются, а гликозидная связь легко подвергается гидролизу в щелочной среде. Растворы гликозидов не мутаротируют.

№14 слайд
Классификация гликозидов
Содержание слайда: Классификация гликозидов Гликозидами называют не только ацетали углеводов, образующиеся при взаимодействии со спиртами, но и продукты, образующиеся при взаимодействии полуацетального гидроксила с другими соединениями. Связь, которую образует полуацетальный гидроксил, также называют гликозидной. В зависимости от размера цикла гликозиды подразделяются на пиранозиды и фуранозиды. Неуглеводная часть гликозида называется агликоном («не сахар»). Гликозиды могут классифицироваться в зависимости от того через какой атом агликон связан с сахарной частью гликозида: С-гликозиды, О-гликозиды, N-гликозиды, S-гликозиды.

№15 слайд
Образование сложных эфиров
Содержание слайда: Образование сложных эфиров Сложные эфиры можно получить, действуя на моносахариды ангидридами органических кислот. Например, при взаимодействии с уксусным ангидридом получаются ацетильные производные моносахаридов. Сложные эфиры гидролизуются как в кислой, так и щелочной средах. Большое значение имеют эфиры фосфорной кислоты – фосфаты, содержащиеся во всех растительных и животных организмах. К ним, прежде всего, относятся фосфаты D-глюкозы: 1-фосфат D-глюкозы получается при гидролизе гликогена с помощью фермента фосфорилазы; 6-фосфат глюкозы образуется на первой стадии гликолиза (катаболизма глюкозы в организме). Фосфаты D-рибозы и 2-дезокси- -D-рибозы служат структурными элементами ДНК, РНК, АТФ и ряда коферментов.

№16 слайд
Дисахариды Дисахариды биозы -
Содержание слайда: Дисахариды Дисахариды (биозы) - продукт конденсации двух молекул моносахаридов, соединенных О-гликозидной связью. Если в реакции конденсации принимают участие оба полуацетальных гидроксила и два остатка моноз соединяются гликозид-гликозидной связью, образуется невосстанавливающий дисахарид. Такой дисахарид не содержит гликозидный гидроксил, не может переходить в открытую альдегидную форму и поэтому не восстанавливает окислов металлов ( не вступает в реакции с гидроксидом меди или в реакцию «серебряного зеркала»). Если в реакции конденсации принимают участие один полуацетальный и один спиртовой гидроксил и два остатка моноз соединяются гликозид-гликозной связью, образуется восста- навливающий дисахарид. Такой дисахарид содержит гликозидный гидроксил, за счёт которого может переходить в открытую альдегидную форму и выступать в качестве восстановителя.

№17 слайд
Олигосахариды в природе
Содержание слайда: Олигосахариды в природе Сахароза (тростниковый сахар, свекловичный сахар) чрезвычайно распространена в растениях. Невосстанавливающий дисахарид. Мальтоза (солодовый сахар) состоит из двух остатков -D-глюкопиранозы, связанных -1,4 -гликозидной связью. Мальтоза образуется при гидролизе крахмала под действием фермента амилазы; если долго жевать хлеб можно почувствовать сладковатый вкус мальтозы, образующейся из крахмала хлеба под действием амилазы слюны. Восстанавливающий дисахарид. Целлобиоза состоит из двух остатков -D-глюкопиранозы, связанных -1,4-гликозидной связью. Является структурной единицей клетчатки (целлюлозы). Восстанавливающий дисахарид. Лактоза (молочный сахар) состоит из остатков -D- галактопиранозы и -D-глюкопиранозы, связанных -1,4- гликозидной связью. Содержится только в молоке млекопитающих, восстанавливающий дисахарид. В организме гидролизуется под действием фермента лактазы, при недостаточности которого наблюдается неспособность переваривать лактозу. Поэтому при потреблении молока людьми с лактазным дефицитом, лактоза не переваривается, а сбраживается кишечной микрофлорой с неприятными последствиями (метеоризм, диарея). Трегалоза (грибной сахар) состоит из двух остатков -D- глюкопиранозы, связанных за счёт полуацетальных гидроксильных групп, поэтому трегалоза не восстанавливающий дисахарид. Содержится в грибах и некоторых растениях. В дрожжах содержание трегалозы достигает 18 % на сухое вещество. Другие дисахариды, такие как мелибиоза, гентибиоза, тураноза, примвероза и т.д. встречаются редко. Трисахариды встречаются редко. Трисахарид рафиноза, состоящий из галактозы, глюкозы и фруктозы, содержится в сахарной свекле. Является невосстанавливающим трисахаридом. Другие трисахариды (генцианоза, мелецитоза, маннинотриоза, целлотриоза, плантеоза) встречаются чрезвычайно редко. Тетрасахарид стахиоза состоит из двух остатков галактозы, одного остатка глюкозы и одного остатка фруктозы. Стахиоза содержится в семенах люпина, сои, гороха, невосстанавливающий тетрасахарид. Циклические олигосахариды – циклодекстрины образуются при гидролизе крахмала под действием амилазы. Состоят из 6…10 остатков D-глюкозы, связанных -1,4-гликозидными связями. Циклодекстрины образуют цветные комплексы с йодом, причём молекулы йода лежат внутри полости циклодекстрина.

№18 слайд
Полисахариды Полисахариды или
Содержание слайда: Полисахариды Полисахариды или полиозы – это высокомолекулярные углеводы. По химической природе это полигликозиды. В молекулах полисахаридов много остатков моносахаридов связаны друг с другом гликозидными связями. При этом для связи с предыдущим остатком новый остаток предоставляет спиртовую гидроксильную группу, чаще всего при 4-м или 6-м атомах углерода. Для связи с последующим остатком предыдущий остаток предоставляет гликозидный (полуацетальный) гидроксил. В полисахаридах растительного происхождения в основном осуществляются (14)- и (16) связи. Полисахаридные цепи могут быть разветвлёнными или неразветвлёнными (линейными). Полисахариды гидролизуются в кислой среде и устойчивы к гидролизу в щелочной среде. Полный гидролиз приводит к образованию моносахаридов или их производных, неполный – к ряду промежуточных олигосахаридов, в том числе и дисахаридов. Гомополисахариды состоят из остатков одного моносахарида, например: крахмал, целлюлоза, гликоген и др. Гетерополисахариды состоят из остатков разных моносахаридов. Гетерополисахариды в организме связаны с белками и образуют сложные надмолекулярные комплексы. Примерами гетерополисахаридов могут служить гиалуроновая кислота и гепарин.

№19 слайд
Крахмал Крахмал является
Содержание слайда: Крахмал Крахмал является главным запасным питательным веществом растений. Гомополисахариды крахмала делятся на две фракции: амилозу (15 - 25%) и амилопектин (75 - 85%). Амилоза (С6Н10О5)n. Полисахариды амилозы представляют собой неразветвленные или малоразветвленные цепочки, содержащие около 200 остатков глюкозы. Амилоза имеет кристаллическое строение. Растворима в горячей воде, но при стоянии растворов вскоре выпадает в осадок. Дает с йодом синее окрашивание. Легко гидролизуется ферментам и кислотами до мальтозы и глюкозы. Амилопектин (C6H10О5)n. Молекулы амилопектина более сложны, чем амилозы. Они представляют собой сильно разветвленные цепи, содержащие около 4000 остатков глюкозы и 0,4% фосфорной кислоты. Амилопектин в горячей воде не растворяется, но сильно набухает дает клейстер. Йодом окрашивается в фиолетовый цвет.

№20 слайд
Целлюлоза клетчатка Целлюлоза
Содержание слайда: Целлюлоза (клетчатка) Целлюлоза или клетчатка – наиболее распространенный растительный полисахарид. Она выполняет роль опорного материала растений. В хлопке содержится почти 100 % целлюлозы, в древесине – 50…70 %. Целлюлоза построена из остатков β-D-глюкопиранозы, которые связаны между собой β(14)-гликозидными связями. Цепь не имеет разветвлений, в ней содержится 2500-12000 β-D-глюкозных остатков (молекулярная масса 0,4-2 млн). Цепь целлюлозы имеет вид нити, спиралеобразно закрученной вокруг своей оси и удерживаемой в таком положении водородными связями гидроксилов остатков глюкозы. Отдельные нити соединяются межмолекулярными водородными связями в пучки, имеющие характер волокон. Это обеспечивает особые механические свойства клетчатки - высокую прочность и упругость целлюлозы, отсутствие растворимости в большинстве растворителей. Благодаря наличию свободных спиртовых гидроксильных групп целлюлоза способна реагировать со спиртами и кислотами с образованием эфиров. Из растворов ацетата целлюлозы в ацетоне изготовляют ацетатное волокно. Клетчатка легко гидролизуется кислотами. Продуктами гидролиза являются целлодекстрины, целлобиоза и глюкоза. Целлюлоза не расщепляется ферментами желудочно-кишечного тракта человека и не может быть питательным веществом, но способствует регулированию функции желудочно-кишечного тракта, стимулирует перистальтику толстого кишечника.

№21 слайд
Пектиновые вещества
Содержание слайда: Пектиновые вещества Пектиновые вещества содержатся в плодах и овощах, для них характерно желеобразование в присутствии органических кислот, что используется в пищевой промышленности для изготовления желе и мармеладов. В основе пектиновых веществ лежит пектовая - полигалактуроновая кислота. Пектовая кислота состоит из остатков D-галактуроновой кислоты, связанных (14)-гликозидной связью. Некоторые пектиновые вещества оказывают противоязвенное действие и являются основой ряда препаратов, например, плантаглюцид из подорожника.

№22 слайд
Гетерополисахариды Альгиновые
Содержание слайда: Гетерополисахариды Альгиновые кислоты содержатся в бурых водорослях. Неразветвленная цепь построена из соединенных (14)-связями остатков D-маннуроновой и L-гулуроновой кислот. Альгиновые кислоты как гелеобразователи используются в пищевой промышленности. Морские водоросли служат источником многих полисахаридов. Например, широко применяемый в биохимических исследованиях агар представляет собой гетерополисахарид, содержащий большое число сульфатных групп. Агар состоит из смеси агарозы и агаропектина. В полисахаридной цепи агарозы чередуются остатки D-галактозы и L-лактозы. Полисахариды соединительной ткани. Соединительная ткань распределена по всему организму и обусловливает прочность и упругость органов, эластичность их соединения, стойкость к проникновению инфекций. Полисахариды соединительной ткани связаны с белками. Наиболее полно изучены хондроитинсульфаты (кожа, хрящи, сухожилия), гиалуроновая кислота (стекловидное тело глаза, пуповина, хрящи, суставная жидкость), гепарин (печень). Эти полисахариды обладают общими чертами в строении: их неразветвленные цепи построены из дисахаридных остатков, в состав которых входят уроновые кислоты (D-глюкуроновая, D-галактуроновая, L-идуроновая) и N-ацетилгексозамины (N-ацетилглюкозамин, N-ацетилгалактозамин). Некоторые из них содержат остатки серной кислоты.

№23 слайд
Строение некоторых
Содержание слайда: Строение некоторых гетерополисахаридов Гиалуроновая кислота построена из дисахаридных остатков, соединенных (14)-гликозидными связями. Дисахаридный фрагмент состоит из остатков D-глюкуроновой кислоты и N-ацетил-О-глюкозамина, связанных (13)- гликозидной связью. Гиалуроновая кислота имеет большую молекулярную массу – 2-7 млн., растворы обладают высокой вязкостью, с чем связывают её барьерную функцию, обеспечивающую непроницаемость соединительной ткани для патогенных микроорганизмов Xондроитинсульфаты состоят из дисахаридных остатков N-ацетилированного хондрозина, соединенных (14)-гликозидными связями. В состав хондрозина входят D-глюкуроновая кислота и D-галактозамин, связанные между собою (13)-гликозидной связью. Сульфатная группа образует эфирную связь с гидроксильной группой N-ацетил-О-галактозамина, находящейся либо в 4-м, либо в 6-м положении, Молекулярная масса хондроитинсульфатов составляет 10 000 - 60 000. Хондроитинсульфаты и гиалуроновая кислота содержатся не в свободном, а в связанном виде с полипептидными цепями.

Скачать все slide презентации Углеводы. Классификация углеводов. Явление мутаротации. (Лекция 4) одним архивом: